Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

Zi-zhong Zhou , Ming-han Zhou , Xiu-e Su , Pan Cheng , Ya-xun Zhou

Optoelectronics Letters ›› : 54 -57.

PDF
Optoelectronics Letters ›› : 54 -57. DOI: 10.1007/s11801-017-6260-1
Article

Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

Author information +
History +
PDF

Abstract

WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 μm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 μm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

Cite this article

Download citation ▾
Zi-zhong Zhou, Ming-han Zhou, Xiu-e Su, Pan Cheng, Ya-xun Zhou. Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass. Optoelectronics Letters 54-57 DOI:10.1007/s11801-017-6260-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FENGT, YNAF-p, LIUS. Optoelectronics Letters, 2016, 12: 119

[2]

JhaA, RichardsB, JoseG, FernandezTT, JoshiP, JiangX, LousteauJ. Progress in Materials Science, 2012, 57: 1426

[3]

YangFJ, HuangB, WuLB, QiYW, PengSX, LiJ, ZhouYX. Optoelectronics Letters, 2015, 11: 361

[4]

LaksminarayanaG, Vidya SagarR, BuddhuduS. Journal of Luminescence, 2008, 128: 690

[5]

KarunakaranRT, MarimuthuK, ArumugamD, Surendra BaduS, Leon-LuisSF, JayasankarCK. Optical Materials, 2010, 32: 1035

[6]

ZhengJ, ChengY, WuZQ, ZhouWW, TangMX. Journal of Optoelectronics·Laser, 2015, 26: 1924

[7]

MaheshvaranK, ArunkumarS, SudarsanV, NatarajanV, MarimuthuK. Journal of Alloys and Compounds, 2013, 561: 142

[8]

JuddBR. Physical Review, 1962, 127: 750

[9]

TanabeS, OhyagiT, SogaN, HanadaT. Physical Review B, 1992, 46: 3305

[10]

OfeltJS. Journal of Chemical Physics, 1962, 37: 511

[11]

RatnakaramYC, Viswanadha ReddyA. Journal of Non-Crystalline Solids, 2000, 277: 142

[12]

ChagraouiA, TairiA, AjebliK, BensaidH, MoussaouiA. Journal of Alloys and Compounds, 2010, 495: 67

[13]

LingannaK, Narro-GarcíaR, DesirenaH, De la RosaE, BasavapoornimaCh, VenkatramuV, JayasankarCK. Journal of Alloys and Compounds, 2016, 684: 322

[14]

MirgorodskyA, ColasM, SmirnovM, Merle-MéjeanT, El-MallawanyR, ThomasP. Journal of Solid State Chemistry, 2012, 190: 45

[15]

ZhuJ, DaiSX, WuLG, ZhangW, ShenX, WangXS, XuTF, WangGX, NieQH. Spectroscopy and Spectral Analysis, 2011, 31: 894

[16]

HanXZ, ShenLF, PunE Y B, MaTC, LinH. Optical Materials, 2014, 36: 1203

[17]

KesavuluCR, SreedharVB, JangK, YiSS. Materials Research Bulletin, 2014, 51: 336

[18]

BoettiNG, LousteauJ, ChiaseraA, FerrariM, MuraE, ScarpignatoGC, AbrateS, MilaneseD. Journal of Luminescence, 2012, 132: 1265

AI Summary AI Mindmap
PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/