Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique

Chao Wang

Optoelectronics Letters ›› : 50 -53.

PDF
Optoelectronics Letters ›› : 50 -53. DOI: 10.1007/s11801-017-6257-9
Article

Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique

Author information +
History +
PDF

Abstract

The Yb3+-doped silica glass was prepared by the SiCl4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb3+-doped silica glass are studied at room temperature. The integrated absorption cross section, stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×104 pm3, 1.39 pm2 and 0.56 ms, respectively. The Yb3+-doped microstructure fiber (MSF) was also fabricated by using the Yb3+-doped silica glass as fiber core. What’s more, the laser properties of the Yb3+-doped MSF are studied.

Cite this article

Download citation ▾
Chao Wang. Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique. Optoelectronics Letters 50-53 DOI:10.1007/s11801-017-6257-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RichardsonD J, NilssonJ, ClarksonW A. Journal of the Optical Society of America B 27, 2010, B63

[2]

WeiS, QiangF, YangX, YuguoQ, JingliF, XiangjieM, QihangZ. Journal of Optoelectronics ·Laser, 2015, 26: 662

[3]

HädrichS, RothhardtJ, EidamT, GottschallT, LimpertJ, TunnermannA. Proc. SPIE 7914, 2011,

[4]

WangF, BiW, JiangP, WuY, FuX. Journal of Optoelectronics·Laser, 2015, 26: 1435

[5]

ZhangW, LiuM, TongZ, CaoY. Journal of Optoelectronics·Laser, 2016, 27: 12

[6]

Le PersonJ, NazabalV, BaldaR, AdamJ L, FernandezJ. Optical Materials, 2005, 27: 1748

[7]

GuyutY, SteimacherA, BelanconM P, MedinaA N, BaessoM L, LimaM S, AndradeL H C, BrenierA, JurdycA, BoulonG. Journal of the Optical Society of America B, 2011, 28: 2510

[8]

MessiasD N, CatundaT. Optics Letters, 2007, 32: 665

[9]

TownsendJ E, PooleS B, PayneD N. Electronics Letter, 1987, 23: 329

[10]

StoneJ, BurrusC A. Applied Physics Letter, 1973, 23: 388

[11]

PetitV, SekiyaE H, OkazakiT, BacusR, BaruaP, YaoB, OhsonoK, SaitoK. Proc. SPIE 6998, 2008,

[12]

LangnerA, SchötzG, SuchM, KayserT, ReichelV, GrimmS, KirchhofJ, KrauseV, RehmannG. Proc. SPIE, 2008, 6873: 687311

[13]

KoponenJ J, PetitL, KokkiT, AallosV, PaulJ, IhalainenH. Optical Engineering, 2011, 50: 111605

[14]

LeichM, JustF, LangnerA, SuchM, SchötzG, EschrichT, GrimmS. Optics Letters, 2011, 36: 1557

[15]

Montieli PonsodaJ J, NorinL, YeC G, BosundM, SöderlundM J, TervonenA, HonkanenS. Optics Express, 2012, 20: 25085

[16]

WangC, ZhouG, HanY, WangW, HouL. Journal of Lightwave Technology, 2013, 31: 2864

[17]

WangC, ZhouG, XiaC, HanY, ZhaoX T, ZhangW, WangW. Optical Fiber Technology, 2014, 20: 106

[18]

TakebeH, MurataT, MorinagaK. Journal of the American Ceramic Society, 1996, 79: 681

[19]

LuoZ, MartonosiM. Journal of Non-Crystalline Solids, 2001, 292: 108

[20]

AullB F, JenssenH P. IEEE Journal of Selected Topics in Quantum Electronics, 1982, 18: 925

[21]

DellachL, PayneS, ChaseL, LarryK, WayneL, WilliamF. IEEE Journal of Quantum Electronics, 1993, 29: 1179

[22]

XueluZ, TorataniH. Physical Review B, 1995, 52: 15889

[23]

TorataniL I, MolevV I, PozdnyakovA E, SurkovaV F. Journal of Optical Technology, 2004, 71: 828

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/