Highly efficient terahertz generation from periodically-poled RbTiOPO4

Zhong-yang Li, Meng-tao Wang, Si-lei Wang, De-gang Xu, Jian-quan Yao

Optoelectronics Letters ›› , Vol. 13 ›› Issue (2) : 127-130.

Optoelectronics Letters ›› , Vol. 13 ›› Issue (2) : 127-130. DOI: 10.1007/s11801-017-6253-0
Article

Highly efficient terahertz generation from periodically-poled RbTiOPO4

Author information +
History +

Abstract

Terahertz (THz) generation by periodically-poled RbTiOPO4 (PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes and anti-Stokes interaction processes are investigated from coupled wave equations. The THz intensities and quantum conversion efficiency are calculated. Compared with that of non-cascaded DFG processes, the THz intensity in 7-order cascaded DFG processes is increased to 2.95 times. The quantum conversion efficiency of 149.9% in cascaded processes can be realized, which exceeds the Manley-Rowe limit.

Cite this article

Download citation ▾
Zhong-yang Li, Meng-tao Wang, Si-lei Wang, De-gang Xu, Jian-quan Yao. Highly efficient terahertz generation from periodically-poled RbTiOPO4. Optoelectronics Letters, , 13(2): 127‒130 https://doi.org/10.1007/s11801-017-6253-0

References

[1]
KoenigS., Lopez-DiazD., AntesJ., BoesF., HennebergerR., LeutherA., TessmannA., SchmogrowR., HillerkussD., PalmerR., ZwickT., KoosC., FreudeW., AmbacherO., LeutholdJ., KallfassI.. Nature Photon., 2013, 7: 977
CrossRef Google scholar
[2]
WattsC. M., ShrekenhamerD., MontoyaJ., LipworthG., HuntJ., SleasmanT., KrishnaS., SmithD. R., PadillaW. J.. Nature Photon., 2014, 8: 605
CrossRef Google scholar
[3]
YuJ.-l, MengQ.-l, YeR., ZhongZ.-q, ZhangB.. Journal of Optoelectronics ·Laser, 2015, 26: 1417
[4]
LiZ.-x, XuD.-g, WangY.-y. Journal of Optoelectronics·Laser, 2015, 26: 177
[5]
DingY. J.. J. Opt. Soc. Am. B, 2014, 31: 2696
CrossRef Google scholar
[6]
MajkicA., ZgonikM., PetelinA., JazbinšekM., RuizB., MedranoC., GünterP.. Appl. Phys. Lett., 2014, 105: 141115
CrossRef Google scholar
[7]
DolasinskiB., PowersP. E., HausJ. W., CooneA.. Opt. Express, 2015, 23: 3669
CrossRef Google scholar
[8]
SaitoK., TanabeT., OyamaY.. Appl. Opt., 2014, 53: 3587
CrossRef Google scholar
[9]
RaviK., HemmerM., CirmiG., ReichertF., SchimpfD. N., MückeO. D., KärtnerF. X.. Opt. Lett., 2016, 41: 3806
CrossRef Google scholar
[10]
LeeA. J., PaskH. M.. Opt. Express, 2015, 23: 8687
CrossRef Google scholar
[11]
SaitoK., TanabeT., OyamaY.. J. Opt. Soc. Am. B, 2015, 32: 617
CrossRef Google scholar
[12]
RothM., TseitlinM., AngertN.. Glass Physics and Chemistry, 2005, 31: 86
CrossRef Google scholar
[13]
PackM. V., ArmstrongD. J., SmithA. V.. Appl. Opt., 2004, 43: 3319
CrossRef Google scholar
[14]
HildenbrandA., WagnerF. R., AkhouayriH., NatoliJ.-Y., CommandréM., ThéodoreF., AlbrechtH.. Appl. Opt., 2009, 48: 4263
CrossRef Google scholar
[15]
OseledchikY. S., PisarevskyA. I., ProsvirninA. L., StarshenkoV. V., SvitankoN. V.. Opt. Mater., 1994, 3: 237
CrossRef Google scholar
[16]
OrtegaT. A., PaskH. M., SpenceD. J., LeeA. J.. Opt. Express, 2016, 24: 10254
CrossRef Google scholar
[17]
MikamiT., OkamotoT., KatoK.. Opt. Mater., 2009, 31: 1628
CrossRef Google scholar
[18]
SangM., QiuJ., YangT., LuX., ZhangW.. Chin. J. Lasers, 2010, 37: 389
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61201101, 61601183 and 61205003), the Young Backbone Teachers in University of Henan Province (No.2014GGJS-065), the Foundation and Advanced Technology Research Program of Henan Province (No.162300410269), and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No.16IRTSTHN017).

Accesses

Citations

Detail

Sections
Recommended

/