Highly efficient terahertz generation from periodically-poled RbTiOPO4

Zhong-yang Li , Meng-tao Wang , Si-lei Wang , De-gang Xu , Jian-quan Yao

Optoelectronics Letters ›› : 127 -130.

PDF
Optoelectronics Letters ›› : 127 -130. DOI: 10.1007/s11801-017-6253-0
Article

Highly efficient terahertz generation from periodically-poled RbTiOPO4

Author information +
History +
PDF

Abstract

Terahertz (THz) generation by periodically-poled RbTiOPO4 (PPRTP) with a quasi-phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes and anti-Stokes interaction processes are investigated from coupled wave equations. The THz intensities and quantum conversion efficiency are calculated. Compared with that of non-cascaded DFG processes, the THz intensity in 7-order cascaded DFG processes is increased to 2.95 times. The quantum conversion efficiency of 149.9% in cascaded processes can be realized, which exceeds the Manley-Rowe limit.

Cite this article

Download citation ▾
Zhong-yang Li, Meng-tao Wang, Si-lei Wang, De-gang Xu, Jian-quan Yao. Highly efficient terahertz generation from periodically-poled RbTiOPO4. Optoelectronics Letters 127-130 DOI:10.1007/s11801-017-6253-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KoenigS., Lopez-DiazD., AntesJ., BoesF., HennebergerR., LeutherA., TessmannA., SchmogrowR., HillerkussD., PalmerR., ZwickT., KoosC., FreudeW., AmbacherO., LeutholdJ., KallfassI.. Nature Photon., 2013, 7: 977

[2]

WattsC. M., ShrekenhamerD., MontoyaJ., LipworthG., HuntJ., SleasmanT., KrishnaS., SmithD. R., PadillaW. J.. Nature Photon., 2014, 8: 605

[3]

YuJ.-l, MengQ.-l, YeR., ZhongZ.-q, ZhangB.. Journal of Optoelectronics ·Laser, 2015, 26: 1417

[4]

LiZ.-x, XuD.-g, WangY.-y. Journal of Optoelectronics·Laser, 2015, 26: 177

[5]

DingY. J.. J. Opt. Soc. Am. B, 2014, 31: 2696

[6]

MajkicA., ZgonikM., PetelinA., JazbinšekM., RuizB., MedranoC., GünterP.. Appl. Phys. Lett., 2014, 105: 141115

[7]

DolasinskiB., PowersP. E., HausJ. W., CooneA.. Opt. Express, 2015, 23: 3669

[8]

SaitoK., TanabeT., OyamaY.. Appl. Opt., 2014, 53: 3587

[9]

RaviK., HemmerM., CirmiG., ReichertF., SchimpfD. N., MückeO. D., KärtnerF. X.. Opt. Lett., 2016, 41: 3806

[10]

LeeA. J., PaskH. M.. Opt. Express, 2015, 23: 8687

[11]

SaitoK., TanabeT., OyamaY.. J. Opt. Soc. Am. B, 2015, 32: 617

[12]

RothM., TseitlinM., AngertN.. Glass Physics and Chemistry, 2005, 31: 86

[13]

PackM. V., ArmstrongD. J., SmithA. V.. Appl. Opt., 2004, 43: 3319

[14]

HildenbrandA., WagnerF. R., AkhouayriH., NatoliJ.-Y., CommandréM., ThéodoreF., AlbrechtH.. Appl. Opt., 2009, 48: 4263

[15]

OseledchikY. S., PisarevskyA. I., ProsvirninA. L., StarshenkoV. V., SvitankoN. V.. Opt. Mater., 1994, 3: 237

[16]

OrtegaT. A., PaskH. M., SpenceD. J., LeeA. J.. Opt. Express, 2016, 24: 10254

[17]

MikamiT., OkamotoT., KatoK.. Opt. Mater., 2009, 31: 1628

[18]

SangM., QiuJ., YangT., LuX., ZhangW.. Chin. J. Lasers, 2010, 37: 389

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/