Effects of etching conditions on surface morphology of periodic inverted trapezoidal patterned Si(100) substrate

Lu Zhang, Guo-dong Yuan, Qi Wang, Ke-chao Wang, Rui-wei Wu, Zhi-qiang Liu, Jin-min Li, Jun-xi Wang

Optoelectronics Letters ›› , Vol. 13 ›› Issue (1) : 45-49.

Optoelectronics Letters ›› , Vol. 13 ›› Issue (1) : 45-49. DOI: 10.1007/s11801-017-6242-3
Article

Effects of etching conditions on surface morphology of periodic inverted trapezoidal patterned Si(100) substrate

Author information +
History +

Abstract

In this paper, the anisotropic etching process of Si(100) wafers in tetramethyl ammonium hydroxide (TMAH) solution with isopropyl alcohol (IPA) is investigated in detail. An inverted trapezoidal pattern is developed. A series of experiments are performed by changing TMAH concentration, IPA concentration, etching temperature and etching time. The structure of inverted trapezoidal patterns and roughness of the bottom surface are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that with TMAH concentration increases, the roughness of bottom surface will decrease. The addition of IPA into TMAH solution improves the morphology of the bottom surface significantly. Low temperature is beneficial to get a smooth bottom surface. Furthermore, etching time can change the bottom surface roughness. A model is proposed to explain the etching processes. The hillock area ratio of the bottom surface has the same tendency as the etching area ratio. Finally, smooth silicon inverted trapezoidal patterns are obtained for epitaxial growth of GaN-based light emitting diode (LED) devices.

Cite this article

Download citation ▾
Lu Zhang, Guo-dong Yuan, Qi Wang, Ke-chao Wang, Rui-wei Wu, Zhi-qiang Liu, Jin-min Li, Jun-xi Wang. Effects of etching conditions on surface morphology of periodic inverted trapezoidal patterned Si(100) substrate. Optoelectronics Letters, , 13(1): 45‒49 https://doi.org/10.1007/s11801-017-6242-3

References

[1]
JunK-W, KimB-M, KimJ-S. Micro & Nano Letters, 2015, 10: 487
CrossRef Google scholar
[2]
ZhuD, WallisD J, HumphreysC J. Reports on Progress in Physics, 2013, 76: 1
CrossRef Google scholar
[3]
TongY-y, YangG-f, ZhaoJ-l, ZhangQ, WangJ. Journal of Optoelectronics·Laser, 2015, 26: 829
[4]
WangX-w, ZhongS-l, XuJ, WuY. Journal of Optoelectronics·Laser, 2015, 26: 829
[5]
Sun Qian, Yan Wei, Feng Mei-xin, Li Zeng-cheng, Feng Bo, Zhao Han-min and Yang Hui, Journal of Semiconductors 37, 044006-1 (2016).
[6]
ImaedaK, BesshoK, ShikidaM. Microsystem Technologies, 2015, 22: 2801
CrossRef Google scholar
[7]
RolaK P, ZubelI. Microsystem Technologies, 2013, 19: 635
CrossRef Google scholar
[8]
DehzangiA, LarkiF, MajlisB Y, NavaseryM G, NavaseryM, AbdullahA M, HutagalungS D, HamidN A, NoorM M, VakilianM, SaionE B. International Journal of Electrochemical Science, 2013, 8: 8084
[9]
SchroderH, ObermeierE, SteckenbornA. Journal of Micromechanics and Microengineering, 1999, 9: 139
CrossRef Google scholar
[10]
SeidelH, CsepregiL, HeubergerA, BaumgSrtelH. Journal of Electrochemical Society, 1990, 137: 3612
CrossRef Google scholar
[11]
Noorhaniah YusohS, YaacobK A. Beilstein Journal of Nanotechnology, 2016, 7: 1461
CrossRef Google scholar
[12]
ChungG-S. Metals and Materials International, 2001, 7: 643
CrossRef Google scholar
[13]
ShikidaM, SatoK, TokoroK, UchikawaD. Sensors and Actuators, 2000, 80: 179
CrossRef Google scholar
[14]
FanY-j, HanP-d, LiangP, XingY-p, YeZ, HuS-x. Applied Surface Science, 2013, 264: 761
CrossRef Google scholar
[15]
JunK-H, KimB-J, KimJ-S. Electronic Materials Letters, 2015, 11: 871
CrossRef Google scholar
[16]
FujitsukaN, HamaguchiK, FunabashiH, KawasakiE, FukadaT. Silicon Anisotropic Etching without Attacking Aluminum with Si and Oxidizing Agent Dissolved in TMAH Solution, 2003, 114: 1667
[17]
NijdamA J, van VeenendaalE, CuppenH M, van SuchtelenJ, ReedM L, GardeniersJ G E, van EnckevortW J P, VliegE, ElwenspoekM. Journal of Applied Physics, 2001, 89: 4113
CrossRef Google scholar
[18]
ZubelI, KramkowskaM. Sensors and Actuators A, 2001, 93: 138
CrossRef Google scholar
[19]
LandsbergerL M, NasehS, KahriziM, ParanjapeM. IEEE Journal of Microelectromechanical Systems, 1996, 5: 106
CrossRef Google scholar
[20]
TiagoM, PamakštysK, LuísG, GraçaM, SusanaC. Micromachines, 2015, 6: 1534
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.51472229, 61422405, 51202238, 61306051 and 61474109), the “100 Talent Program” of Chinese Academy of Sciences, and the Opening Funding of State Key Lab of Silicon Materials (No.SKL2014-4).

Accesses

Citations

Detail

Sections
Recommended

/