Experimental simulation of spin-1 states by second-order type-II parametric down-conversion

Jia-qiang Zhao, Lian-zhen Cao, Yang Yang, Huai-xin Lu

Optoelectronics Letters ›› , Vol. 13 ›› Issue (1) : 74-76.

Optoelectronics Letters ›› , Vol. 13 ›› Issue (1) : 74-76. DOI: 10.1007/s11801-017-6234-3
Article

Experimental simulation of spin-1 states by second-order type-II parametric down-conversion

Author information +
History +

Abstract

In this paper, by using the second-order parametric down-conversion of the nonlinear crystal, the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density, the efficiency of second-order parametric down-conversion is enhanced. The intensity of the spin-1 state is 0.5/s. The fidelity of the state is up to F=0.891±0.002, and the contrast is C=17.3. The results provide a new method for Stern-Gerlach measurement on the spin-1 system.

Cite this article

Download citation ▾
Jia-qiang Zhao, Lian-zhen Cao, Yang Yang, Huai-xin Lu. Experimental simulation of spin-1 states by second-order type-II parametric down-conversion. Optoelectronics Letters, , 13(1): 74‒76 https://doi.org/10.1007/s11801-017-6234-3

References

[1]
WuT, FangB L, LiuL. Chinese Physics B, 2013, 22: 110311
CrossRef Google scholar
[2]
CaiX D, WuD, SuZ E, ChenM C, WangX L, LiL, LiuN L, LuC Y, PanJ W. Physical Review Letters, 2015, 114: 110504
CrossRef Google scholar
[3]
ChuanT K, MaillardJ, ModiK, PaterekT, PaternostroM, PianiM. Physical Review Letters, 2012, 109: 070501
CrossRef Google scholar
[4]
XiangG Y, GuoG C. Chinese Physics B, 2013, 22: 110601
CrossRef Google scholar
[5]
ZhaoJ Q, CaoL Z, LuH X, WangX Q. Journal of Optoelectronics·Laser, 2014, 25: 1018
[6]
HorodeckiR, HorodeckiP, HorodeckiM, HorodeckiK. Reviews of Modern Physics, 2009, 81: 865
CrossRef Google scholar
[7]
WangC, ZhangY, JinG S. Physical Review A, 2011, 84: 032307
CrossRef Google scholar
[8]
OkamotoR, HofmannH F, TakeuchiS, SasakiK. Physical Review Letters, 2005, 95: 210506
CrossRef Google scholar
[9]
ShulmanM D, HarveyS P, NicholJ M, BartlettS D, DohertyA C, UmanskyV, YacobyA. Nature Communications, 2014, 5: 5156
CrossRef Google scholar
[10]
HsuB C, BerrondoM, HueleJ S. Physical Review A, 2011, 83: 012109
CrossRef Google scholar
[11]
HomeD, PanA K, AliMd M, MajumdarA S. Journal of Physics A: Mathematical General, 2007, 40: 13975
CrossRef Google scholar
[12]
RasteginA E. Quantum Information & Computation, 2014, 14: 996
[13]
ConroyJ M, MillerH G. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2015, 91: 052112
CrossRef Google scholar
[14]
DuttaN, DeyA. Blurred Path-Spin Entanglement in Stern-Gerlach Apparatus: Interplay Between Magnetic Inhomogeneity and Larmor Precession, 2014,
[15]
XuX S, YinS Y, MoroR, de HeerW A. Physical Review Letters, 2005, 95: 237209
CrossRef Google scholar
[16]
SaltidlS M, SukhorukovA A, KivsharY S. Progress in Optics, 2005, 47: 1
CrossRef Google scholar
[17]
LuH X, ZhaoJ Q, CaoL Z, WangX Q. Physical Review A, 2011, 84: 044101
CrossRef Google scholar
[18]
Lamas-LinaresA, HowellJ C, BouwmeesterD. Nature, 2001, 412: 887
CrossRef Google scholar
[19]
LiuT K, WangJ S, ZhangM S. Journal of Optoelectronics ·Laser, 2004, 15: 739
[20]
ZhaoJ Q, LuH X, WangX Q. Journal of Optoelectronics ·Laser, 2011, 22: 711

This work has been supported by the Natural Science Foundation of China (Nos.11174224, 11404246 and 11447225), the Natural Science Foundation of Shandong Province (Nos.ZR2013FM001, 2013SJGZ10, BS2015DX015 and ZR2014JL029), and the Science and Technology Development Program of Shandong Province (Nos.2011YD01049 and 2013YD01016).

Accesses

Citations

Detail

Sections
Recommended

/