Magnetic fluid based deformable mirror for aberration correction of liquid telescope

Jun-qiu Wu , Zhi-zheng Wu , Xiang-hui Kong , Zhu Zhang , Mei Liu

Optoelectronics Letters ›› : 90 -94.

PDF
Optoelectronics Letters ›› : 90 -94. DOI: 10.1007/s11801-017-6231-6
Article

Magnetic fluid based deformable mirror for aberration correction of liquid telescope

Author information +
History +
PDF

Abstract

A magnetic fluid based deformable mirror (MFDM) that could produce a large stroke more than 100 μm is designed and demonstrated experimentally with respect to the characteristics of the aberration of the liquid telescope. Its aberration correction performance is verified by the co-simulation using COMSOL and MATLAB. Furthermore, the stroke performance of the MFDM and the decentralized linear quadratic Gaussian (LQG) mirror surface control approach are experimentally evaluated with a prototype of MFDM in an adaptive optics system to show its potential application for the large aberration correction of liquid telescopes.

Cite this article

Download citation ▾
Jun-qiu Wu, Zhi-zheng Wu, Xiang-hui Kong, Zhu Zhang, Mei Liu. Magnetic fluid based deformable mirror for aberration correction of liquid telescope. Optoelectronics Letters 90-94 DOI:10.1007/s11801-017-6231-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FrancoisF., JeanS.. Optical Engineering, 2014, 53: 034103

[2]

SurdejJ., AbsilO., BartczakP., BorraE.. Proceedings of SPIE - The International Society for Optical Engineering, Ground-based and Airborne Telescopes, 2006, 6267: 626704

[3]

PaulH.. Applied Optics, 2006, 45: 8052

[4]

TysonR. K.. Principle of Adaptive Optics, 2011,

[5]

ZhangH. X., ZhangJ., QiaoY. J.. Journal of Optoelectronics ?Laser, 2013, 24: 838

[6]

XuanL., LiD. Y., LiuY. G.. Chinese Journal of Liquid Crystal and Displays, 2015, 30: 1

[7]

HanL. Q., YouY. H.. Journal of Optoelectronics? Laser, 2015, 26: 857

[8]

WlodarczykK. L., BryceE., SchwartzN.. Review of Scientific Instruments, 2014, 85: 024502

[9]

BechetC., GuesalagaA., NeichelB., FesquetV.. Optics Express, 2014, 22: 2994

[10]

WuZ. Z., IqbalA., Ben AmaraF.. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems, 2013,

[11]

BrousseauD., ThibaultS., BorraE. F., BoivinS. F.. Applied Optics, 2014, 53: 4903

[12]

LemmerA. J., GriffithsI. M., GroffT. D.. Mathematical and Computational Modeling of a Ferrofluid Deformable Mirror for High-contrast Imaging, SPIE Astronomical Telescopes and Instrumentation, 2016,

[13]

DeryJ. P., BrousseauD., RochetteM.. Journal of Applied Polymer Science, 2016, 134: 44542

[14]

GollwitzerC., MatthiasG., RichterR.. Journal of Fluid Mechanics, 2014, 571: 455

[15]

YenY. T., LuT. Y., LeeY. C.. ACS Applied Materials & Interfaces, 2014, 6: 4292

[16]

CaoQ. L., HanX. T., ZhangB., LiL.. IEEE Transactions on Applied Superconductivity, 2012, 22: 4401504

[17]

SkogestadS., PostlethwaiteI.. Multivariable Feedback Control: Analysis and Design, 2005,

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/