Effect of anions from calcium sources on the synthesis of nano-sized xonotlite fibers

Fei Liu , Sha Chen , Qian Lin , Xiao-dan Wang , Jian-xin Cao

Optoelectronics Letters ›› : 81 -83.

PDF
Optoelectronics Letters ›› : 81 -83. DOI: 10.1007/s11801-017-6228-1
Article

Effect of anions from calcium sources on the synthesis of nano-sized xonotlite fibers

Author information +
History +
PDF

Abstract

The xonotlite fibers were synthesized via the hydrothermal synthesis method with CaO and SiO2 as the raw materials and the molar ratio of Si/Ca of 1.0. Effect of anions from various calcium sources on the microstructure of the xonotlite fibers is studied in this paper. These obtained products were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM) techniques to investigate their crystalline phase, crystal structure and morphology. The results indicate that anion from various calcium sources has little influence on the crystalline phases of xonotlite fibers but poses a great impact on their morphologies. Xonotlite fibers with single crystal characteristics and large aspect ratio of 50—100 were successfully fabricated from CaCl2 as calcium material at 225 °C for 15 h. The existence of Cl anion in the CaO-SiO2-H2O system significantly contributes to the formation of xonotlite crystal.

Cite this article

Download citation ▾
Fei Liu, Sha Chen, Qian Lin, Xiao-dan Wang, Jian-xin Cao. Effect of anions from calcium sources on the synthesis of nano-sized xonotlite fibers. Optoelectronics Letters 81-83 DOI:10.1007/s11801-017-6228-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZouJ. J., GuoC. B., WeiC. D., JiangY. S.. Research on Chemical Intermediates, 2016, 42: 519

[2]

HsiangH., ChenW. S., HuangW. C.. Materials and Structures, 2016, 49: 905

[3]

LiuL., YueY., CaoJ. X.. Materials Science Forum, 2014, 809-810: 672

[4]

ZhangS. G., XieH. B., LiG. Z.. Construction Conserves Energy, 2006, 34: 28

[5]

LiuF., WangX. D., CaoJ. X.. Chinese Science Bulletin, 2012, 57: 3323

[6]

ZouJ., GuoC., JiangY., WeiC., LiF.. Materials Chemistry & Physics, 2106, 172: 121

[7]

HartmannA., SchulenbergD., BuhlJ. C.. Journal of Materials Science and Chemical Engineering, 2015, 3: 39

[8]

LiuF., ZhuB., CaoJ. X.. Advanced Materials Research, 2011, 148-149: 1755

[9]

YangJ., ZhangX., MaH. W., WangM. W., WuH.. Key Engineering Materials, 2014, 633: 7

[10]

TangZ. H., MaS. H., WangY. J., H GuoX., ZhengS. L.. The Chinese Journal of Process Engineering, 2013, 13: 1047

[11]

AkbayrakS., ÖzkarS.. Dalton Transactions, 2014, 43: 1797

[12]

AkbayrakS., ÖzkarS.. Journal of Molecular Catalysis A Chemical, 2016, 424: 254

[13]

HuJ. J., LiuJ. Q., RuanL. L., BianH. D., ZhangX. Y., WuY. C.. Optoelectronics Letters, 2015, 11: 5

[14]

ZhangX. Y., YuanS. L., YuanY. Z., LiX.. Optoelectronics Letters, 2015, 11: 1

[15]

SpudulisE., ŠavareikaV., ŠpokauskasA.. Materials Science, 2013, 19: 190

[16]

BaltakysK., PrichockieneE.. Materials Science-Poland, 2010, 28: 295

[17]

BlackL., GarbevK., StummA.. Advances in Applied Ceramics, 2009, 108: 137

[18]

GuoX. Y., MaS. H., S. Q., ZhengS. L., ZouX.. Chinese Journal of Nonferrous Metals, 2015, 25: 534

[19]

LiuF., WangX. D., CaoJ. X.. International Journal of Minerals,Metallurgy and Materials, 2013, 20: 88

[20]

LiJ., LiuF., CaoJ. X.. Rare Metal Materials and Engineering, 2011, 40: 99

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/