Effects of Mg doping content and annealing temperature on the structural properties of Zn1-xMgxO thin films prepared by radio-frequency magnetron sputtering

Wen-han Du , Jing-jing Yang , Yu Zhao , Chao Xiong

Optoelectronics Letters ›› : 42 -44.

PDF
Optoelectronics Letters ›› :42 -44. DOI: 10.1007/s11801-017-6204-9
Article

Effects of Mg doping content and annealing temperature on the structural properties of Zn1-xMgxO thin films prepared by radio-frequency magnetron sputtering

Author information +
History +
PDF

Abstract

The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn1-xMgxO thin films. Here, using radio-frequency magnetron sputtering method, we prepared Zn1-xMgxO thin films on single crystalline Si(100) substrates with a series of x values. By means of X-ray diffraction (XRD) and scanning electron microscope (SEM), the crystalline structure and morphology of Zn1-xMgxO thin films with different x values are investigated. The crystalline structure of Zn1-xMgxO thin film is single phase with x<0.3, while there is phase separation phenomenon with x>0.3, and hexagonal and cubic structures will coexist in Zn1-xMgxO thin films with higher x values. Especially with lower x values, a shoulder peak of 35.1° appearing in the XRD pattern indicates a double-crystalline structure of Zn1-xMgxO thin film. The crystalline quality has been improved and the inner stress has been released, after the Zn1-xMgxO thin films were annealed at 600 °C in vacuum condition.

Cite this article

Download citation ▾
Wen-han Du, Jing-jing Yang, Yu Zhao, Chao Xiong. Effects of Mg doping content and annealing temperature on the structural properties of Zn1-xMgxO thin films prepared by radio-frequency magnetron sputtering. Optoelectronics Letters 42-44 DOI:10.1007/s11801-017-6204-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CongC X, YaoB, ZhouQ J, ChenJ R. J. Phys. D: App. Phys., 2008, 41: 105303

[2]

CongC X, YaoB, XingG Z, XieY P, GuanL X. Appl. Phys. Lett., 2006, 89: 262108

[3]

VashaeiZ, MinegishiT, SuzukiH, HanadaT, ChoM W, YaoT. J. Appl. Phys., 2005, 98: 054911

[4]

ChandramohanR, ThirumalaiJ, VijayanT A, ValanarasuS, Elhil VizhianS, SrikanthM, SwaminathanV. Adv. Sci. Lett., 2010, 3: 319

[5]

AneeshPM, JayarajMK, ReshmiR, AjimshaRS, KukrejaLM, AldrinA, RojasF, BertomeuJ, López-VidrierJ, HernándezS. J. Nanosci. Nanotechnol., 2015, 15: 3944

[6]

FanMM, LiuKW, ZhangZZ, LiBH, ChenX, ZhaoDX, ShanCX, ShenDZ. Appl. Phys. Lett., 2014, 105: 011117

[7]

MaznichenkoI V, ErnstA, BouhassouneM, HenkJ, DäneM, LüdersM, BrunoP, HergertW, MertigI, SzotekZ, TemmermanW M. Phys. Rev. B, 2009, 80: 144101

[8]

YangJ J, FangQ Q, WangD D, DuW H. AIP Advances, 2015, 5: 047104

[9]

YangJ J, FangQ Q, WangW N, WangD D, WangC. J. Appl. Phys., 2014, 115: 124509

[10]

ZhangZP, von WencksternH, GrundmannM. Appl. Phys. Lett., 2013, 103: 171111

[11]

RenX, ZiW, MaQ, XiaoF, GaoF, HuS, ZhouY, LiuS. Solar Energy Materials & Solar Cells, 2015, 134: 54

[12]

LukaG, KopalkoK, LusakowskaE, NittlerL, LisowskiW, SobczakJW, JablonskiA, SmertenkoPS. Organic Electronics, 2015, 25: 135

[13]

SinghA, VijA, KumarD, KhannaP K, KumarM, GautamS, ChaeK H. Semicond. Sci. Technol., 2013, 28: 025004

[14]

DeviV, KumarM, KumarR, JoshiBC. Ceramics International, 2015, 41: 6269

PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

/