Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4

Gao Shen, Zuo-han Li, Ming Han

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 430-432.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 430-432. DOI: 10.1007/s11801-016-6191-2
Article

Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4

Author information +
History +

Abstract

Combining the self-stimulated Raman scattering technology and saturable absorber of Cr4+:YAG, a 1.17 μm c-cut Nd:GdVO4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB3O5 frequency doubling crystal.

Cite this article

Download citation ▾
Gao Shen, Zuo-han Li, Ming Han. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4. Optoelectronics Letters, , 12(6): 430‒432 https://doi.org/10.1007/s11801-016-6191-2

References

[1]
CheY. F.. Optics Letters, 2004, 29: 1915
CrossRef Google scholar
[2]
FanS. Z., ZhangX. Y., WangQ. P., LiuJ. Z., LiL., CongZ. H., ChenX. H., ZhanX. L.. Optics Communications, 2011, 284: 1642
CrossRef Google scholar
[3]
LeeA. J., PaskH. M., DekkerP., PipeJ. A.. Optics Express, 2008, 16: 21958
CrossRef Google scholar
[4]
WangZ. C., DuC. L., RuanS. C., ZhanL.. Optics & Laser Technology, 2010, 42: 716
CrossRef Google scholar
[5]
DingS., WangM., WangS., ZhanW.. Optics Express, 2013, 11: 13052
CrossRef Google scholar
[6]
WuZ. G., CongZ. H., ChenX. H., ZhangX. Y., WangP. Q., LanW. X., ZhanY. G.. Optics & Laser Technology, 2013, 54: 137
CrossRef Google scholar
[7]
WangM. Q., DingS. H., YuW. Y., ZhanW. H.. Laser Physics Letters, 2013, 10: 045403
CrossRef Google scholar
[8]
PengJ. Y., ZhengY., ShiY. X., SheJ. P.. Optics & Laser Technology, 2012, 7: 2175
CrossRef Google scholar
[9]
CheY. F.. Optics Letters, 2004, 29: 2632
CrossRef Google scholar
[10]
TianW., WangC., WangG., LiuS., LiJ.. Laser Physics Letters, 2007, 4: 196
CrossRef Google scholar
[11]
ZhaoY. G., WangZ. W., YuH. H., XuX. G.. IEEE Photonics Journal, 2012, 4: 2285
CrossRef Google scholar
[12]
MaierM., KaiserW., GiordmainJ. A.. Physical review letters, 1966, 26: 1275
CrossRef Google scholar
[13]
ChenY. F., KuM. L., TsaiL. Y., CheY. C.. Optics Letters, 2004, 19: 2279
CrossRef Google scholar
[14]
BasievT. T., VassilievS. V., KonjushkinV. A., OsikoV. V., ZagumennyiA. I., ZavartsevY. D., ShcherbakoI. A.. Laser Physics Letters, 2004, 5: 237
CrossRef Google scholar
[15]
ChangY. T., ChangH. L., SuK. W., CheY. F.. Optics Express, 2009, 14: 11892
CrossRef Google scholar
[16]
MorrisJ. A., PollocC. R.. Optics Letters, 1990, 8: 440
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61108021), the Fundamental Research Funds for the Central Universities (Nos.2013JBM091 and S16JB00010).

Accesses

Citations

Detail

Sections
Recommended

/