Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer

Qiu-lin Wei, Zuo-xing Guo, Lei Zhao, Liang Zhao, De-zeng Yuan, Guo-qing Miao, Mao-sheng Xia

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 441-445.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 441-445. DOI: 10.1007/s11801-016-6190-3
Article

Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer

Author information +
History +

Abstract

Microstructure and misfit dislocation behavior in InxGa1-xAs/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In0.82Ga0.18As/InP heterostructure, the InxGa1-xAs buffer layer was grown. The residual strain of the In0.82Ga0.18As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium (In) content In0.82Ga0.82As epitaxial layer has significant influence on the carrier concentration.

Cite this article

Download citation ▾
Qiu-lin Wei, Zuo-xing Guo, Lei Zhao, Liang Zhao, De-zeng Yuan, Guo-qing Miao, Mao-sheng Xia. Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer. Optoelectronics Letters, , 12(6): 441‒445 https://doi.org/10.1007/s11801-016-6190-3

References

[1]
JinX., NakaharaH., SaitohK., SakaT., UjiharaT., TanakaN., TakedaY.. Journal of Crystal Growth, 2012, 353: 84
CrossRef Google scholar
[2]
HostutM., AlyorukM., TanselT., KilicA., TuranR., AydinliA., ErgunY.. Superlattices & Microstructures, 2015, 79: 116
CrossRef Google scholar
[3]
TounsiN., HabchiM.M., ChineZ., RebeyA., El JaniB.. Superlattices & Microstructures, 2013, 59: 133
CrossRef Google scholar
[4]
HuynhS.H., HaM.T.H., DoH.B., LucQ.H., YuH.W.. Applied Physics Letters, 2016, 109: 10
CrossRef Google scholar
[5]
ZhengF., WangC., SunZ. B., ZhaiG.J.. Journal of Optoelectronics·Laser, 2014, 25: 1254
[6]
LinS.J., LiJ.J., HeL.J., DenJ., HanJ.. Journal of Optoelectronics·Laser, 2014, 25: 1471
[7]
ManoT., MitsuishiK., HaN., OhtakeA., CastellanoA.. Crystal Growth & Design, 2016, 16: 5412
CrossRef Google scholar
[8]
WeyherJ.L., FornariR., GörögT., KellyJ.J., ErnéC.B.. Journal of Crystal Growth, 1994, 141: 57
CrossRef Google scholar
[9]
CasaP.D., MaaßdorfA., ZeimerU., WeyersM.. Journal of Crystal Growth, 2016, 434: 116
CrossRef Google scholar
[10]
GrabmaierJ.G., WatsonC.B.. Physical Status Solidi, 1969, 32: K13
CrossRef Google scholar
[11]
TakenakaT., HayashiH., MurataK., InoguchiT.. Jpn J. Applied Physics Letters, 1978, 17: 1145
CrossRef Google scholar
[12]
EmuraS., GondaS., MatsuiY.. Physical Review B, 1988, 38: 3280
CrossRef Google scholar
[13]
IslamM.R., VermaP., YamadaM.. Jpn J. Applied Physics, 2002, 41: 991
CrossRef Google scholar
[14]
EstreraJ.P., StevensP.D., GlosserR.. Applied Physics Letters, 1992, 61: 1927
CrossRef Google scholar
[15]
GroenenJ., LandaG., CarlesR.. J. Applied Physics, 1997, 82: 803
CrossRef Google scholar
[16]
BurnsG., WieC.R., DacolF.H.. Applied Physics Letters, 1987, 51: 1919
CrossRef Google scholar
[17]
JusserandB., VoisinP., VoosM.. Applied Physics Letters, 1985, 46: 678
CrossRef Google scholar
[18]
CerdeiraF., BuchenauerC.J., PollakF.H.. Physical Review B, 1972, 5: 580
CrossRef Google scholar
[19]
NicholasR.J., BrunelL.C., HuantS.. Physical Review Letter, 1985, 55: 883
CrossRef Google scholar
[20]
SasakiT., NormanA.G., RomeroM.J., Al-JassimM.M., TakahasiM., KojimaN., OhshitaY., YamaguchiM.. Physical Status Solidi C, 2013, 10: 1640
CrossRef Google scholar
[21]
LiJ.P., MiaoG.Q., ZhangZ.W., ZengY.G.. Cryst. Eng. Comm., 2015, 17: 5808
CrossRef Google scholar
[22]
FatemiM., StahlbushR.E.. Applied Physics Letters, 1991, 58: 825
CrossRef Google scholar
[23]
BaiY., LeeK. E., ChengC.. J. Applied Physics, 2008, 104: 084518
CrossRef Google scholar
[24]
ChenY. W., HsuW. C., HsuR. T.. Solid-State Electronics, 2004, 48: 119
CrossRef Google scholar

This work has been supported by the National Key Basic Research Program of China (No.2012CB619200), the National Natural Science Foundation of China (No.61474053), the State Key Laboratory for Mechanical Behavior of Materials of Xi'an Jiaotong University (No.20161806), and the Natural Science Basic Research Open Foundation of the Key Lab of Automobile Materials, Ministry of Education, Jilin University (No.1018320144001).

Accesses

Citations

Detail

Sections
Recommended

/