Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer

Qiu-lin Wei , Zuo-xing Guo , Lei Zhao , Liang Zhao , De-zeng Yuan , Guo-qing Miao , Mao-sheng Xia

Optoelectronics Letters ›› : 441 -445.

PDF
Optoelectronics Letters ›› : 441 -445. DOI: 10.1007/s11801-016-6190-3
Article

Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer

Author information +
History +
PDF

Abstract

Microstructure and misfit dislocation behavior in InxGa1-xAs/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In0.82Ga0.18As/InP heterostructure, the InxGa1-xAs buffer layer was grown. The residual strain of the In0.82Ga0.18As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium (In) content In0.82Ga0.82As epitaxial layer has significant influence on the carrier concentration.

Cite this article

Download citation ▾
Qiu-lin Wei, Zuo-xing Guo, Lei Zhao, Liang Zhao, De-zeng Yuan, Guo-qing Miao, Mao-sheng Xia. Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer. Optoelectronics Letters 441-445 DOI:10.1007/s11801-016-6190-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JinX., NakaharaH., SaitohK., SakaT., UjiharaT., TanakaN., TakedaY.. Journal of Crystal Growth, 2012, 353: 84

[2]

HostutM., AlyorukM., TanselT., KilicA., TuranR., AydinliA., ErgunY.. Superlattices & Microstructures, 2015, 79: 116

[3]

TounsiN., HabchiM.M., ChineZ., RebeyA., El JaniB.. Superlattices & Microstructures, 2013, 59: 133

[4]

HuynhS.H., HaM.T.H., DoH.B., LucQ.H., YuH.W.. Applied Physics Letters, 2016, 109: 10

[5]

ZhengF., WangC., SunZ. B., ZhaiG.J.. Journal of Optoelectronics·Laser, 2014, 25: 1254

[6]

LinS.J., LiJ.J., HeL.J., DenJ., HanJ.. Journal of Optoelectronics·Laser, 2014, 25: 1471

[7]

ManoT., MitsuishiK., HaN., OhtakeA., CastellanoA.. Crystal Growth & Design, 2016, 16: 5412

[8]

WeyherJ.L., FornariR., GörögT., KellyJ.J., ErnéC.B.. Journal of Crystal Growth, 1994, 141: 57

[9]

CasaP.D., MaaßdorfA., ZeimerU., WeyersM.. Journal of Crystal Growth, 2016, 434: 116

[10]

GrabmaierJ.G., WatsonC.B.. Physical Status Solidi, 1969, 32: K13

[11]

TakenakaT., HayashiH., MurataK., InoguchiT.. Jpn J. Applied Physics Letters, 1978, 17: 1145

[12]

EmuraS., GondaS., MatsuiY.. Physical Review B, 1988, 38: 3280

[13]

IslamM.R., VermaP., YamadaM.. Jpn J. Applied Physics, 2002, 41: 991

[14]

EstreraJ.P., StevensP.D., GlosserR.. Applied Physics Letters, 1992, 61: 1927

[15]

GroenenJ., LandaG., CarlesR.. J. Applied Physics, 1997, 82: 803

[16]

BurnsG., WieC.R., DacolF.H.. Applied Physics Letters, 1987, 51: 1919

[17]

JusserandB., VoisinP., VoosM.. Applied Physics Letters, 1985, 46: 678

[18]

CerdeiraF., BuchenauerC.J., PollakF.H.. Physical Review B, 1972, 5: 580

[19]

NicholasR.J., BrunelL.C., HuantS.. Physical Review Letter, 1985, 55: 883

[20]

SasakiT., NormanA.G., RomeroM.J., Al-JassimM.M., TakahasiM., KojimaN., OhshitaY., YamaguchiM.. Physical Status Solidi C, 2013, 10: 1640

[21]

LiJ.P., MiaoG.Q., ZhangZ.W., ZengY.G.. Cryst. Eng. Comm., 2015, 17: 5808

[22]

FatemiM., StahlbushR.E.. Applied Physics Letters, 1991, 58: 825

[23]

BaiY., LeeK. E., ChengC.. J. Applied Physics, 2008, 104: 084518

[24]

ChenY. W., HsuW. C., HsuR. T.. Solid-State Electronics, 2004, 48: 119

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/