A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

Chao He , Ze-fu Tan , Yu-feng Shao , Li Cai , He-sheng Pu , Yun-le Zhu , Si-si Huang , Yu Liu

Optoelectronics Letters ›› : 361 -365.

PDF
Optoelectronics Letters ›› : 361 -365. DOI: 10.1007/s11801-016-6176-1
Article

A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

Author information +
History +
PDF

Abstract

A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio (BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

Cite this article

Download citation ▾
Chao He, Ze-fu Tan, Yu-feng Shao, Li Cai, He-sheng Pu, Yun-le Zhu, Si-si Huang, Yu Liu. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink. Optoelectronics Letters 361-365 DOI:10.1007/s11801-016-6176-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DengM. L., CaoB. Y., GiddingsR. P., DongY. X., JiangN., NessetD., QiuK., TangJ. M.. IEEE Photonics Journal, 2015, 7: 7200112

[2]

YuanJ.-g, LiZ.-c, HuY.-x, ShengQ.-l, LinJ.-z, PangY.. Journal of Optoelectronics ·Laser, 2015, 26: 75

[3]

GiacoumidisE., KavatzikidisA., TsokanosA., TangJ. M., TomkosI.. IEEE Journal of Optical Communication and Networking, 2012, 4: 769

[4]

HalabiF., ChenL., ParreS., BarthomeufS., GiddingsR. P., Aupetit-BerthelemotC., HamiéA., TangJ. M.. Journal of Lightwave Technology, 2016, 34: 2228

[5]

ZhangS., BaiS., BaiC., LuoQ., FangW.. Optoelectronics Letters, 2014, 10: 140

[6]

ZhouZ., BiM., XiaoS., ZhangY., HuW.. IEEE Photonics Technology Letters, 2015, 27: 470

[7]

BertignonoL., FerreroV., ValvoM., GaudinoR.. Journal of Lightwave Technology, 2016, 34: 2064

[8]

CanoI. N., LerinA., PratJ.. IEEE Photonics Technology Letters, 2016, 28: 35

[9]

MuH., WangM., JianS.. Optoelectronics Letters, 2014, 10: 455

[10]

SalesV., SegarraJ., PoloV., PartJ.. IEEE Photonics Technology Letters, 2015, 27: 257

[11]

ZhangW., ZhangC., JinW., ChenC., JiangN., QiuK.. IEEE Photonics Technology Letters, 2014, 26: 1964

[12]

HuX., YangX., ShenZ., HeH., HuW., BaiC.. IEEE Photonics Technology Letters, 2015, 27: 2429

[13]

LefebvreK., NguyenA. T., RuschL. A.. Journal of Lightwave Technology, 2014, 32: 3854

[14]

ZhangW., ZhangC., ChenC., JinW., QiuK.. IEEE Photonics Technology Letters, 2016, 28: 998

[15]

ChenM., XiaoX., YuJ., LiF., HuangZ. R., ZhouH.. IEEE Photonics Journal, 2016, 8: 1

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/