A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

Chao He, Ze-fu Tan, Yu-feng Shao, Li Cai, He-sheng Pu, Yun-le Zhu, Si-si Huang, Yu Liu

Optoelectronics Letters ›› , Vol. 12 ›› Issue (5) : 361-365.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (5) : 361-365. DOI: 10.1007/s11801-016-6176-1
Article

A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

Author information +
History +

Abstract

A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio (BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

Cite this article

Download citation ▾
Chao He, Ze-fu Tan, Yu-feng Shao, Li Cai, He-sheng Pu, Yun-le Zhu, Si-si Huang, Yu Liu. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink. Optoelectronics Letters, , 12(5): 361‒365 https://doi.org/10.1007/s11801-016-6176-1

References

[1]
DengM. L., CaoB. Y., GiddingsR. P., DongY. X., JiangN., NessetD., QiuK., TangJ. M.. IEEE Photonics Journal, 2015, 7: 7200112
[2]
YuanJ.-g, LiZ.-c, HuY.-x, ShengQ.-l, LinJ.-z, PangY.. Journal of Optoelectronics ·Laser, 2015, 26: 75
[3]
GiacoumidisE., KavatzikidisA., TsokanosA., TangJ. M., TomkosI.. IEEE Journal of Optical Communication and Networking, 2012, 4: 769
CrossRef Google scholar
[4]
HalabiF., ChenL., ParreS., BarthomeufS., GiddingsR. P., Aupetit-BerthelemotC., HamiéA., TangJ. M.. Journal of Lightwave Technology, 2016, 34: 2228
CrossRef Google scholar
[5]
ZhangS., BaiS., BaiC., LuoQ., FangW.. Optoelectronics Letters, 2014, 10: 140
CrossRef Google scholar
[6]
ZhouZ., BiM., XiaoS., ZhangY., HuW.. IEEE Photonics Technology Letters, 2015, 27: 470
CrossRef Google scholar
[7]
BertignonoL., FerreroV., ValvoM., GaudinoR.. Journal of Lightwave Technology, 2016, 34: 2064
CrossRef Google scholar
[8]
CanoI. N., LerinA., PratJ.. IEEE Photonics Technology Letters, 2016, 28: 35
CrossRef Google scholar
[9]
MuH., WangM., JianS.. Optoelectronics Letters, 2014, 10: 455
CrossRef Google scholar
[10]
SalesV., SegarraJ., PoloV., PartJ.. IEEE Photonics Technology Letters, 2015, 27: 257
CrossRef Google scholar
[11]
ZhangW., ZhangC., JinW., ChenC., JiangN., QiuK.. IEEE Photonics Technology Letters, 2014, 26: 1964
CrossRef Google scholar
[12]
HuX., YangX., ShenZ., HeH., HuW., BaiC.. IEEE Photonics Technology Letters, 2015, 27: 2429
CrossRef Google scholar
[13]
LefebvreK., NguyenA. T., RuschL. A.. Journal of Lightwave Technology, 2014, 32: 3854
CrossRef Google scholar
[14]
ZhangW., ZhangC., ChenC., JinW., QiuK.. IEEE Photonics Technology Letters, 2016, 28: 998
[15]
ChenM., XiaoX., YuJ., LiF., HuangZ. R., ZhouH.. IEEE Photonics Journal, 2016, 8: 1

This work has been supported by the National Natural Science Foundation of China (No.61107064), the Chongqing University Innovation Team Founding (No.KJTD201320), and the Chongqing Science and Technology Commission Foundation (No.cstc2016jcyjA1233).

Accesses

Citations

Detail

Sections
Recommended

/