Determination of bandgaps of photoactive materials in perovskite solar cells at high temperatures by in-situ temperature-dependent resistance measurement

Hao Zhu , Zu-bin Zhao , Huan-qi Cao , Hao Yu , Jin-zhao Li , Xiao-min Chen , Su-juan Dong , Li-ying Yang , Shou-gen Yin

Optoelectronics Letters ›› : 337 -339.

PDF
Optoelectronics Letters ›› :337 -339. DOI: 10.1007/s11801-016-6175-2
Article

Determination of bandgaps of photoactive materials in perovskite solar cells at high temperatures by in-situ temperature-dependent resistance measurement

Author information +
History +
PDF

Abstract

Normally, it is difficult to directly measure the bandgaps of perovskite based on methylammonium (MA) or formamidinium (FA) at high temperatures due to material decomposition. We prevent the decomposition by keeping the synthesized perovskite films (MAPbI3 and MAPbI3) in organic iodide vapors, then measure the in-situ resistance of the films at varied temperatures, and further evaluate the bandgaps of these two materials. The evaluated bandgaps are consistent with the results from ultraviolet-visible (UV-vis) absorption spectrum. The bandgap of MAPbI3 decreases with temperature above 95 °C, whereas that of FAPbI3 first increases with temperature from 95 °C to 107 °C and then decreases with temperature above 107 °C.

Cite this article

Download citation ▾
Hao Zhu, Zu-bin Zhao, Huan-qi Cao, Hao Yu, Jin-zhao Li, Xiao-min Chen, Su-juan Dong, Li-ying Yang, Shou-gen Yin. Determination of bandgaps of photoactive materials in perovskite solar cells at high temperatures by in-situ temperature-dependent resistance measurement. Optoelectronics Letters 337-339 DOI:10.1007/s11801-016-6175-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KojimaA., TeshimaK., ShiraiY., MiyasakaT.. Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (II), 2006, 7

[2]

LiX., BiD., YiC., DecoppetJ.-D., LuoJ., ZakeeruddinS. M., HagfeldtA., GratzelM.. Science, 2016, 353: 58

[3]

PolmanA., KnightM., GarnettE. C., EhrlerB., SinkeW. C.. Science, 2016, 352: aad4424

[4]

LiF., DangX., ZhangL., LiuF., SunD., HeQ., LiC., LiB., ZhuH.. Optoelectronics Letters, 2014, 10: 266

[5]

LuG., WangB., GeY. W.. Optoelectronics Letters, 2015, 11: 348

[6]

MilotR. L., EperonG. E., SnaithH. J., JohnstonM. B., HerzL. M.. Advanced Functional Materials, 2015, 25: 6218

[7]

YamadaY., NakamuraT., EndoM., WakamiyaA., KanemitsuY.. Applied Physics Express, 2014, 7: 032302

[8]

FoleyB. J., MarloweD. L., SunK., SaidiW. A., ScudieroL., GuptaM. C., ChoiJ. J.. Applied Physics Letters, 2015, 106: 243904

[9]

FangH., WangF., AdjokatseS., ZhaoN., EvenJ., LoiM. A.. Light: Science & Applications, 2016, 5: e16056

[10]

ChenX., CaoH., YuH., ZhuH., ZhouH., YangL., YinS.. Journal of Materials Chemistry A, 2016, 4: 9124

[11]

AshcroftN. W., MerminN. D.. Solid State Physics, 1976, Orlando, Harcourt College

[12]

PonponJ. P., AmannM.. Crystal Research & Technology, 2007, 42: 253

[13]

HaoF., StoumposC. C., ChangR. P. H., KanatzidisM. G.. Journal of American Chemical Society, 2014, 136: 8094

[14]

ZhangW., SalibaM., StranksS. D., SunY., ShiX., WiesnerU., SnaithH. J.. Nano Letters, 2013, 13: 4505

[15]

DittrichT., AwinoC., PrajongtatP., RechB., Lux-SteinerM. C.. Journal of Physical Chemistry C, 2015, 119: 23968

[16]

MiyataA., MitiogluA., PlochockaP., PortugallO., WangJ. T.-W., StranksS. D., SnaithH. J., NicholasR. J.. Nature Physics, 2015, 11: 582

[17]

TanakaK., TakahashiT., BanT., KondoT., UchidaK., MiuraN.. Solid State Communications, 2003, 127: 619

[18]

StoumposC. C., MalliakasC. D., KanatzidisM. G.. Inorganic Chemistry, 2013, 52: 9019

[19]

EperonG. E., StranksS. D., MenelaouC., JohnstonM. B., HerzL. M., SnaithH. J.. Energy Environmental Science, 2014, 7: 982

[20]

O’DonnellK. P., ChenX.. Applied Physics Letters, 1991, 58: 2924

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/