Nearly deterministic quantum Fredkin gate based on weak cross-Kerr nonlinearity

Yun-xiang Wu, Chang-hua Zhu, Chang-xing Pei

Optoelectronics Letters ›› , Vol. 12 ›› Issue (5) : 395-397.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (5) : 395-397. DOI: 10.1007/s11801-016-6149-4
Article

Nearly deterministic quantum Fredkin gate based on weak cross-Kerr nonlinearity

Author information +
History +

Abstract

A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.

Cite this article

Download citation ▾
Yun-xiang Wu, Chang-hua Zhu, Chang-xing Pei. Nearly deterministic quantum Fredkin gate based on weak cross-Kerr nonlinearity. Optoelectronics Letters, , 12(5): 395‒397 https://doi.org/10.1007/s11801-016-6149-4

References

[1]
LuoM. X., WangX. J.. Science China: Physics, Mechanics & Astronomy, 2014, 57: 1712
[2]
MonroeC., RaussendorfR., RuthvenA., BrownK. R., MaunzP., DuanL. M., KimJ.. Physical Review A, 2014, 89: 022317
CrossRef Google scholar
[3]
MeterR. V., HorsmanC.. Communications of ACM, 2013, 56: 84
CrossRef Google scholar
[4]
ZhouY. Y., ZhouX. J.. Optoelectronics Letters, 2015, 11: 149
CrossRef Google scholar
[5]
ZhouY. Y., ZhouX. J., SuB. B.. Optoelectronics Letters, 2016, 12: 148
CrossRef Google scholar
[6]
KnillE., LaflammeR., MilburnG. J.. Nature, 2001, 409: 46
CrossRef Google scholar
[7]
BuguS., YesilyurtC., QzaydinF.. Physical Review A, 2013, 87: 032331
CrossRef Google scholar
[8]
OzaydinF., BuguS., YesilyurtC., AltintasA. A., TameM., OzdemirS. K.. Physical Review A, 2014, 89: 042311
CrossRef Google scholar
[9]
MilburnG. J.. Physical Review Letters, 1989, 62: 2124
CrossRef Google scholar
[10]
PatelR. B., HoJ., FerreyrolF., RalphT. C., PrydeG. J.. Science Advance, 2016, 2: e1501531
CrossRef Google scholar
[11]
MunroW. J., NemotoK., SpillerT. P.. New Journal of Physics, 2005, 7: 137
CrossRef Google scholar
[12]
FanB., KockumA. F., CombesJ., JohanssonG., HoiI.-C., WilsonC. M., DelsingP., MilburnG. J., StaceT. M.. Physical Review Letters, 2013, 110: 053601
CrossRef Google scholar
[13]
SaralaR., MasselF.. Nanoscale Systems: Mathematical Modeling, Theory and Applications, 2015, 4: 18
[14]
NemotoK., MunroW. J.. Physical Review Letters, 2004, 93: 250502
CrossRef Google scholar
[15]
MunroW. J., NemotoK., BeausoleilR. G., SpillerT. P.. Physical Review A, 2005, 71: 033819
CrossRef Google scholar
[16]
LinQ., LiJ.. Physical Review A, 2009, 79: 022301
CrossRef Google scholar
[17]
LinQ., HeB.. Physical Review A, 2009, 80: 042310
CrossRef Google scholar
[18]
LinQ., HeB.. Scientific Reports, 2015, 5: 12792
CrossRef Google scholar
[19]
DongL., LinY. F., WangJ. X., LiQ. Y., ShenH. Z., DongH. K., RenY. P., XiuX. M., GaoY. J., OhC. H.. Journal of the Optical Society America B, 2016, 33: 253
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61372076 and 61301171), and the Programme of Introducing Talents of Discipline to Universities (No.B08038).

Accesses

Citations

Detail

Sections
Recommended

/