Enhancement of 2.0 μm fluorescence emission in new Ho3+/Tm3+/Yb3+ tri-doped tellurite glasses

Pan Cheng , Feng-jing Yang , Zi-zhong Zhou , Bo Huang , Li-bo Wu , Ya-xun Zhou

Optoelectronics Letters ›› : 340 -343.

PDF
Optoelectronics Letters ›› : 340 -343. DOI: 10.1007/s11801-016-6145-8
Article

Enhancement of 2.0 μm fluorescence emission in new Ho3+/Tm3+/Yb3+ tri-doped tellurite glasses

Author information +
History +
PDF

Abstract

For enhancing the 2.0 μm band fluorescence of Ho3+, a certain amount of WO3 oxide was introduced into Ho3+/Tm3+/Yb3+ tri-doped tellurite glass prepared using melt-quenching technique. The prepared tri-doped tellurite glass was characterized by the absorption spectra, fluorescence emission and Raman scattering spectra, together with the stimulated absorption, emission cross-sections and gain coefficient. The research results show that the introduction of WO3 oxide can further improve the 2.0 μm band fluorescence emission through the enhanced phonon-assisted energy transfers between Ho3+/Tm3+/Yb3+ ions under the excitation of 980 nm laser diode (LD). Meanwhile, the maximum gain coefficient of Ho3+ at 2.0 μm band reaches about 2.36 cm-1. An intense 2.0 μm fluorescence emission can be realized.

Cite this article

Download citation ▾
Pan Cheng, Feng-jing Yang, Zi-zhong Zhou, Bo Huang, Li-bo Wu, Ya-xun Zhou. Enhancement of 2.0 μm fluorescence emission in new Ho3+/Tm3+/Yb3+ tri-doped tellurite glasses. Optoelectronics Letters 340-343 DOI:10.1007/s11801-016-6145-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlimovO. K., DoroshenkoM. E., KonyushkinV. A., NakladovA. N., PapashviliA. G., OsikoV. V.. Journal of Luminescence, 2016, 172: 219

[2]

TangG. W., WenX., QianQ., ZhuT. T., LiuW. W., SunM., ChenX. D., YangZ. M.. Journal of Alloys and Compounds, 2016, 664: 19

[3]

TianY., WeiT., JingX. F., ZhangJ. J., XuS. Q.. Materials Research Bulletin, 2016, 76: 67

[4]

XuX. C., ZhouY. X., WangS., WeiS. L., DaiS. X., WangX. S.. Journal of Optoelectronics·Laser, 2012, 23: 1500

[5]

SeshadriM., BarbosaL. C., CordeiroC. M. B., RadhaM., SigoliF. A., RatnakaramY. C.. Journal of Luminescence, 2015, 166: 8

[6]

WangX., ZhangL., KuanP. W., WangS. K., YuC. L., LiK. F., ChenD. P., HuL. L.. Materials Letters, 2015, 158: 442

[7]

DoroszD., ZmojdaJ., KochanowiczM.. Optical Materials, 2013, 35: 2577

[8]

BiswasK., SontakkeA. D., SenR., AnnapurnaK.. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 112: 301

[9]

RaoC. S., KumarK. U., BabuP., JayasankarC. K.. Optical Materials, 2012, 35: 102

[10]

IchikawaM., IshikawaY., WakasugiT., KadonoK.. Journal of Luminescence, 2012, 132: 784

[11]

WuZ. Q., ChengY., ZhouW. W., WuT. Y., YangH. J.. Journal of Optoelectronics·Laser, 2014, 25: 898

[12]

ZhengJ., ChengY., WuZ. Q., ZhouW. W., TangM. X.. Journal of Optoelectronics·Laser, 2015, 26: 1924

[13]

TianY., XuR. R., HuL. L., ZhangJ. J.. Journal of Applied Physics, 2011, 110: 033502

[14]

FaresH., JlassiI., ElhouichetH., FéridM.. Journal of Non-Crystalline Solids, 2014, 396-397: 1

[15]

CarreaudJ., LabruyèreA., DardarH., MoisyF., DuclèreJ. R., CoudercV., BertrandA., Dutreilh-ColasM., DelaizirG., HayakawaT., CrunteanuA., ThomasP.. Optical Materials, 2015, 47: 99

[16]

McCumberD. E.. Physical Review, 1964, 136: A954

[17]

PavaniK., MoorthyL. R., KumarJ. S., BabuA. M.. Journal of Luminescence, 2013, 136: 383

[18]

YiL. X., WangM., FengS. Y., ChenY. K., WangG. N., HuL. L., ZhangJ. J.. Optical Materials, 2009, 31: 1586

[19]

ZhangQ., ChenG. R., ZhangG., QiuJ. R., ChenD. P.. Journal of Applied Physics, 2009, 106: 113102

[20]

LiuX. Q., HuangF. F., ChengJ. M., FanX. K., GaoS., ZhangJ. J., HuL. L., ChenD. P.. Journal of Luminescence, 2015, 162: 197

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/