Light propagation in the micro-size capillary injected by high temperature liquid

Yan-jun Li, Edward Li, Hai Xiao

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 405-408.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 405-408. DOI: 10.1007/s11801-016-6144-9
Article

Light propagation in the micro-size capillary injected by high temperature liquid

Author information +
History +

Abstract

The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.

Cite this article

Download citation ▾
Yan-jun Li, Edward Li, Hai Xiao. Light propagation in the micro-size capillary injected by high temperature liquid. Optoelectronics Letters, , 12(6): 405‒408 https://doi.org/10.1007/s11801-016-6144-9

References

[1]
BIANJ.-c, LANGT.-t, YUW.-j, KONGWe.. Journal of Optoelectronics·Laser, 2015, 26: 2169
[2]
MigueL.-H. J., LuisR. C., AntonioQ. I., AdolfoC.. Journal of Lightwave Technology, 2011, 29: 587
CrossRef Google scholar
[3]
CAOY., LIUW., ZHAOS., TONGZ.-r, LIUH.-yin. Journal of Optoelectronics · Laser, 2015, 26: 1233
[4]
LY., WeiT., MontoyaJ. A., SainiS. V., LanX., TangX., DongJ., XiaoH.. Applied Optics, 2008, 47: 5296
CrossRef Google scholar
[5]
WeiT., HanY., LiY., TsaiH. L., XiaoH.. Optics Express, 2008, 16: 5764
CrossRef Google scholar
[6]
WanH., LanX., HuangJ., YuanL., KimC., XiaoH.. Optics Express, 2013, 21: 15834
CrossRef Google scholar
[7]
FanX., WhitI. M.. Nat. Photonics, 2011, 5: 591
CrossRef Google scholar
[8]
NemiroffJ., PhasukkijwatanaN., SarrafD.. Developments in Ophthalmology, 2016, 56: 139
CrossRef Google scholar
[9]
HaithamN. Z., NateJ. Ke.m, JesungP., RylanderH. G.. Retardation Measurement with Capillary Blood Flow using Enhanced Polarizationsensitivity Optical Coherence Tomography (EPS-OCT), Proceedings of SPIE, 2005, 5690: 228
[10]
AmalenduP., RengasamyR. S., KothariV. K., GhosA.. Textile Progress, 2006, 38: 1
[11]
YooM. S., KimB. J., SungH. J.. International Journal of Heat and Fluid Flow, 2008, 29: 269
CrossRef Google scholar
[12]
OgawJ., KannoI., KoteraH., WasaK., SuzukiT.. Sensors and Actuators Aphysical, 2009, 152: 211
CrossRef Google scholar
[13]
LippitscM. E., DraxlerS., KieslingerD., LehmannH., H. WeiglB.. Applied Optics, 1996, 35: 3426
CrossRef Google scholar
[14]
AvikDu.t, SudiptaM., ShailendraK. V.. Journal of the Optical Society of America B, 2011, 28: 1431
CrossRef Google scholar
[15]
Bar'yakhtarV. G., MikhailovaL. E., Il'inskiiA. G., RomanovaA. V., KhristenkT. M.. Zh. Eksp. Teor. Fiz., 1989, 95: 1404
[16]
DogG.. Zeitschrift für Naturforschung, 1966, 21A: 266

This work has been supported by the U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, USA (No. DEFE0012272), and the Joint Funds (NSFC-Henan) of the National Natural Science Foundation of China (No.U1204615).

Accesses

Citations

Detail

Sections
Recommended

/