Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication

Sheng Huang , Xiang Ao , Yuan-yuan Li , Rui Zhang

Optoelectronics Letters ›› : 349 -352.

PDF
Optoelectronics Letters ›› : 349 -352. DOI: 10.1007/s11801-016-6143-x
Article

Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication

Author information +
History +
PDF

Abstract

In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate (BER) is 10-6, in the same simulation environment, the net coding gain (NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.

Cite this article

Download citation ▾
Sheng Huang, Xiang Ao, Yuan-yuan Li, Rui Zhang. Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication. Optoelectronics Letters 349-352 DOI:10.1007/s11801-016-6143-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LinZ.-g, BaiP., FanW.-t, LinJ.-f, TanR.-l. Chinese Journal of Lasers, 2015, 42: 138

[2]

GallageR. G.. IEEE Transactions on Information Theory, 1962, 8: 21

[3]

LiJ., LiuK.-k, LinS., KA.-G.. IEEE Transactions on Communications, 2015, 63: 1057

[4]

HuangS., Tiank, HeL., LiangT.-y. Journal of Optoelectronics·Laser, 2014, 25: 56

[5]

ZhengJ., BieH.-x, ZhangX.-k, LeiC.-y, FangM., LiS., KangZ.. Journal of Optoelectronics·Laser, 2014, 25: 1

[6]

Jian-huaZ., Guo-huaZ.. IEEE Communications Letters, 2014, 18: 656

[7]

ParkH., HongS., NoJ.-S., ShinD.-J.. IEEE Transactions on Communications, 2013, 61: 3108

[8]

ZhaoM., ZhangX.-L., ZhaoL., LeeC.. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62: 56

[9]

YuanJ.-g, LiuW.-l, HuangS., WangY.. Journal of Beijing University of Posts and Telecommunications, 2013, 36: 20

[10]

YuanJ.-g, ZhouG.-x. Semiconductor Optoelectronics, 2015, 36: 615

[11]

HuangS., JiaX.-t, TianF.-f, YuanJ.-g. Study on Optical Communications, 2014, 40: 24

[12]

Jian-guoY., YaX., LinW., ShengH., YongW.. Optoelectronics Letters, 2013, 9: 42

[13]

YuanJ.-g, LiangM.-q, WangY., LinJ.-z, PangY.. Optoelectronics Letters, 2016, 12: 208

[14]

YuanJ.-g, LiangM.-q, WangY., LinJ.-z, PangY.. Optoelectronics Letters, 2016, 12: 132

[15]

RoxanaS., Pascal OV.. IEEE Transactions on Information Theory, 2012, 58: 585

[16]

ShinM.-H., KimJ.-S., SongH.-Y.. IEEE Communications Letters, 2005, 9: 240

[17]

ITU-TG.975, Forward Error Correction for Submarine Systems, 2000.

[18]

ITU-TG.975.1. Forward Error Correction for High Bit-Rate DWDM Submarine Systems, 2004.

[19]

YuanJ.-g, ZhouG.-x, GaoW.-c, WangY., LinJ.-z, PangY.. Optoelectronics Letters, 2016, 12: 61

[20]

LiJ., LiuK.-k, LinS., KhaledA.-G.. IEEE Transactions on Communications, 2014, 62: 2626

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/