Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing

Heng Ju , Cheng-xin Lin , Jia-qi Zhang , Zhi-jie Liu

Optoelectronics Letters ›› : 344 -348.

PDF
Optoelectronics Letters ›› : 344 -348. DOI: 10.1007/s11801-016-6131-1
Article

Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing

Author information +
History +
PDF

Abstract

The stainless Fe-Mn-Si shape memory alloy (SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What’s more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction (XRD) pattern shows ε-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That’s the γ→ε martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.

Cite this article

Download citation ▾
Heng Ju, Cheng-xin Lin, Jia-qi Zhang, Zhi-jie Liu. Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing. Optoelectronics Letters 344-348 DOI:10.1007/s11801-016-6131-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangH., ZouY., ZouZ.-d, WuD.-t. Optics & Laser Technology, 2015, 65: 119

[2]

TomažK., JanezG.. Journal of Mechanical Engineering, 2010, 56: 150

[3]

GuoH., LiangC., HuaX.-c, MaH.-s, GuoW.-f, JingC.-B., ChuJ.-h. Journal of Optoelectronics·Laser, 2015, 26: 393

[4]

DeanS. W., BergantZ., MarkoS. J., LuisO. J., GrumJ.. Journal of ASTM International, 2001, 8: 2

[5]

ChaoZ., WeiT., LiaoW.-h, LiangH.. Surface and Coatings Technology, 2013, 236: 309

[6]

WangJ.-s, HsiehC.-c, LaiH.-h, KuoC.-w, WuP. T.-y, WuW.. Materials Characterization, 2015, 99: 248

[7]

ShalvandM., HojjatY., AbdullahA., AsadiH.. Materials & Design, 2013, 33: 713

[8]

PanchalV. D.. World Pumps, 2013, 2013: 28

[9]

ZhangJ., LiuK., ZhaoK., LiX., LiuY., ZhangK.. International Journal of Solids and Structures, 2005, 42: 3784

[10]

ZangY.-n, NiX.-w. Journal of Optoelectronics ·Laser, 2015, 26: 1835

[11]

WuD.-n, CuiR.-r, DengC.-y. Journal of Optoelectronics·Laser, 2014, 25: 1516

[12]

Sánchez-BeitiaS., Crespo De AntonioM., AcunaL.. Construction & Building Materials, 2015, 93: 798

[13]

YangJ., ChenJ., YangH.-o, LinX., HuangW.-d. Rare Metal Materials and Engineering, 2004, 33: 1305

[14]

WangR.-p, LeiY.-p, ShiY.-w. Optics & Laser Technology, 2010, 43: 870

[15]

YangQ.-x, ZhangY.-k, ZhangY., FangY., LiaoB., YaoM.. Transactions of Materials and Heat Treatment, 2009, 320: 183

[16]

ZhouC.-y, LinC.-x, GuanH.-f, SunD.-p. Journal of Dalian Maritime University, 2014, 4: 75

[17]

XU Zhu-yao, Shape Memory Materials, Shanghai: Shanghai Jiao Tong University Press. (in Chinese)

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/