Surface morphology of refractive-index waveguide gratings fabricated in polymer films

Yi Dong , Yan-fang Song , Lei Ma , Fang-fang Gao

Optoelectronics Letters ›› : 329 -332.

PDF
Optoelectronics Letters ›› : 329 -332. DOI: 10.1007/s11801-016-6122-2
Article

Surface morphology of refractive-index waveguide gratings fabricated in polymer films

Author information +
History +
PDF

Abstract

The characteristic modifications are reported on the surface of polymeric waveguide film in the process of volume- grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200 fs and wavelength of 800 nm is focused normal to the surface of the sample. The surface morphology modifications are ascribed to a fact that surface swelling occurs during the process. Periodic micro-structure is inscribed with increasing incident power. The laser-induced swelling threshold on the grating, which is higher than that of two-photon initiated photo-polymerization (TPIP) (8 mW), is verified to be about 20 mW. It is feasible to enhance the surface smoothness of integrated optics devices for further encapsulation. The variation of modulation depth is studied for different values of incident power and scan spacing. Ablation accompanied with surface swelling appears when the power is higher. By optimizing the laser carving parameters, highly efficient grating devices can be fabricated.

Cite this article

Download citation ▾
Yi Dong, Yan-fang Song, Lei Ma, Fang-fang Gao. Surface morphology of refractive-index waveguide gratings fabricated in polymer films. Optoelectronics Letters 329-332 DOI:10.1007/s11801-016-6122-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HarnischE., RussewM., KleinJ., KönigN., CrailsheimH., SchmittR.. Optical Materials Express, 2015, 5: 456

[2]

ZhangY.-L., ChenQ.-D., XiaH., SunH.-B.. Nano Today, 2010, 5: 435

[3]

BiedaM., BouchardF., LasagniA. F.. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 319-320: 1

[4]

LiD.-l, WenZ.-y, ShangZ.-g, SheY.. Optoelectronics Letters, 2016, 12: 182

[5]

YuD., LiuH. P., GengY. H., WangW. B., ZhaoY. Y.. Optics Communications, 2014, 330: 199

[6]

D. EL., PS., A. DD., FS., RC.. Optical Materials, 2015, 42: 366

[7]

BiancoA., CoppolaG., Antonietta FerraraM., ParianiG., BertarelliC.. Optical Materials Express, 2015, 5: 2281

[8]

DongY., YuX. Q., SunY. M., HouX. Y., LiY. F., ZhangX.. Polymers Advanced Technologies, 2007, 18: 519

[9]

DongY., YuX. Q., SunY. M., LiY. F., HouX. Y., LiY. F., ZhangX.. Optical Materials, 2008, 30: 935

[10]

DongY., SunY. M., LiY. F., YuX. Q., HouX. Y., ZhangX.. Thin Solid Films, 2008, 516: 1214

[11]

VizsnyiczaiG., KelemenL., OrmosP.. Optics Express, 2014, 22: 24217

[12]

ZhangS.-q, PetreN., VirginieN., JinY.-q. Optoelectronics Letters, 2016, 12: 199

[13]

ShuheiY., MitsuhiroT.. Optics Express, 2015, 23: 5694

[14]

TawfikW., FarooqW. A., AlahmedZ. A.. Journal of the Optical Society of Korea, 2014, 18: 50

[15]

LuF., WangZ., TianZ., XuA.. Optics Communications, 2016, 379: 1

[16]

TH., TO., RK., KH., KH., TW., MF.. Optics Communications, 2003, 228: 279

[17]

ZhangX., SunY., YuX., ZhangB., HuangB., JiangM.. Synthetic Metals, 2009, 159: 2491

[18]

DuY., ZhuM., LiuQ., SuiZ., YiK., JinY., HeH.. Thin Solid Films, 2014, 567: 47

[19]

GastónA. P., CeciliaI. A. I., GustavoA. P., Juan CF., MaximilianoR.. Applied Surface Science, 2016, 369: 422

[20]

Caballero-LucasF., FlorianC., Fernández-PradasJ. M., MorenzaJ. L., SerraP.. Applied Surface Science, 2015, 336: 170

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/