Non-blocking four-port optical router based on thermooptic silicon microrings

Pei-pei Dang , Cui-ting Li , Wen-xue Zheng , Chuan-tao Zheng , Yi-ding Wang

Optoelectronics Letters ›› : 268 -272.

PDF
Optoelectronics Letters ›› : 268 -272. DOI: 10.1007/s11801-016-6105-3
Article

Non-blocking four-port optical router based on thermooptic silicon microrings

Author information +
History +
PDF

Abstract

By using silicon-on-insulator (SOI) platform, 12 channel waveguides, and four parallel-coupling one-microring resonator routing elements, a non-blocking four-port optical router is proposed. Structure design and optimization are performed on the routing elements at 1 550 nm. At drop state with a power consumption of 0 mW, the insertion loss of the drop port is less than 1.12 dB, and the crosstalk between the two output ports is less than −28 dB; at through state with a power consumption of 22 mW, the insertion loss of the through port is less than 0.45 dB, and the crosstalk between the two output ports is below −21 dB. Routing topology and function are demonstrated for the four-port optical router. The router can work at nine non-blocking routing states using the thermo-optic (TO) effect of silicon for tuning the resonance of each switching element. Detailed characterizations are presented, including output spectrum, insertion loss, and crosstalk. According to the analysis on all the data links of the router, the insertion loss is within the range of 0.13—3.36 dB, and the crosstalk is less than −19.46 dB. The router can meet the need of large-scale optical network-on-chip (ONoC).

Cite this article

Download citation ▾
Pei-pei Dang,Cui-ting Li,Wen-xue Zheng,Chuan-tao Zheng,Yi-ding Wang. Non-blocking four-port optical router based on thermooptic silicon microrings. Optoelectronics Letters 268-272 DOI:10.1007/s11801-016-6105-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/