Design and fabrication of a mid-infrared carbon dioxide sensor for the application in greenhouse environment

Jia-ning Wang, Ling-jiao Zheng, Xin-tao Niu, Chuan-tao Zheng, Yi-ding Wang

Optoelectronics Letters ›› , Vol. 12 ›› Issue (5) : 379-383.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (5) : 379-383. DOI: 10.1007/s11801-016-6079-1
Article

Design and fabrication of a mid-infrared carbon dioxide sensor for the application in greenhouse environment

Author information +
History +

Abstract

A mid-infrared carbon dioxide (CO2) sensor is presented for the application in greenhouse environment. An integrated multi-pass gas chamber and a dual-channel differential detection method are adopted to decrease response time and suppress environmental influence, respectively. An optical module is developed using a cost-effective wideband mid-infrared light source, a dual-channel pyre electrical detector and a spherical mirror, and the moisture-proof function is specially designed for enabling the application of this sensor in greenhouse with high humidity. Experiments are carried out to evaluate the sensing performance on CO2 concentration. According to the experimental results, the limit of detection (LoD) is about 3×10-5 with an absorption length of 30 cm. The relative detection error is less than 5% within the measurement range of 3×10-5—5×10-3. Based on 10 h long-term stability measurement on 5×10-4 and 2×10-3 standard CO2 samples, the maximum fluctuations are 1.08% and 3.6%, respectively. By using a 2.4 GHz wireless network communication system for remote monitoring and data recording, a field measurement of this sensor in a greenhouse is conducted, and good performance is proven in such circumstance.

Cite this article

Download citation ▾
Jia-ning Wang, Ling-jiao Zheng, Xin-tao Niu, Chuan-tao Zheng, Yi-ding Wang. Design and fabrication of a mid-infrared carbon dioxide sensor for the application in greenhouse environment. Optoelectronics Letters, , 12(5): 379‒383 https://doi.org/10.1007/s11801-016-6079-1

References

[1]
XinM., ShuangL., YueL., QinzhuG.. Journal of CO2 Utilization, 2015, 11: 63
CrossRef Google scholar
[2]
HwangJ., ShinC., YoeH.. Sensors, 2010, 10: 11189
CrossRef Google scholar
[3]
HwangJ., ShinC., YoeH.. Sensors, 2010, 10: 11566
CrossRef Google scholar
[4]
SomovA., BaranovA., SpirjakinD., SpirjakinA., SleptsovV., PasseroneR.. Sens. Actuators, A: Phys., 2013, 202: 217
CrossRef Google scholar
[5]
HwangJ., ShinC., YoeH.. Sensor, 2010, 10: 11189
CrossRef Google scholar
[6]
MalaverA., MottaN., CorkeP., GonzalezF.. Sensors, 2015, 15: 4072
CrossRef Google scholar
[7]
SalkerA. V., ChoiN.-J., KwakJ.-H., JooB.-S., LeeD.. Sens. Actuators, B: Chem., 2005, 106: 461
CrossRef Google scholar
[8]
MisraS. C. K., MathurP., SrivastavaB. K.. Sens. Actuators, A: Phys., 2004, 114: 30
CrossRef Google scholar
[9]
WuR. J., HuC. H., YehC.T., SuP.G.. Sens. Actuators, B: Chem., 2003, 90: 596
CrossRef Google scholar
[10]
ChenT., SuG. F., YuanH. Y.. Sens. Actuators, B: Chem., 2005, 109: 233
CrossRef Google scholar
[11]
PatrickN., JuliaK., AlexanderL., KatharinaK.H., AndreasB.. Appl. Phys. B: Lasers Opt., 2015, 118: 361
[12]
YuX., LvR. H., SongF., ZhengT., WangY. D.. Spectroscopy Lett., 2014, 47: 30
CrossRef Google scholar
[13]
WuK. J., LiF.Q., ChengX. W., YangY., LinX., XiaY.. Appl. Phys. B: Lasers Opt., 2014, 117: 659
CrossRef Google scholar
[14]
PietroP., SimoneB., lacopoG., DavideM., GiovanniG., NaotaA., MasamichiY., GaetanoS., PaoloD.N., VincenzoS.. Analyst, 2015, 140: 736
CrossRef Google scholar

This work has been supported by the National Key Technology R&D Program of China (Nos.2014BAD08B03 and 2013BAK06B04), the National Natural Science Foundation of China (Nos.61307124 and 11404129), the Science and Technology Department of Jilin Province of China (Nos.20120707 and 20140307014SF), the Changchun Municipal Science and Technology Bureau (Nos.11GH01 and 14KG022), and the State Key Laboratory of Integrated Optoelectronics, Jilin University (No.IOSKL2012ZZ12).

Accesses

Citations

Detail

Sections
Recommended

/