Effects of p-type GaN thickness on optical properties of GaN-based light-emitting diodes

Ming-sheng Xu , Heng Zhang , Quan-bin Zhou , Hong Wang

Optoelectronics Letters ›› : 249 -252.

PDF
Optoelectronics Letters ›› : 249 -252. DOI: 10.1007/s11801-016-6075-5
Article

Effects of p-type GaN thickness on optical properties of GaN-based light-emitting diodes

Author information +
History +
PDF

Abstract

The influence of p-type GaN (pGaN) thickness on the light output power (LOP) and internal quantum efficiency (IQE) of light emitting diode (LED) was studied by experiments and simulations. The LOP of GaN-based LED increases as the thickness of pGaN layer decreases from 300 nm to 100 nm, and then decreases as the thickness decreases to 50 nm. The LOP of LED with 100-nm-thick pGaN increases by 30.9% compared with that of the conventional LED with 300-nm-thick pGaN. The variation trend of IQE is similar to that of LOP as the decrease of GaN thickness. The simulation results demonstrate that the higher light efficiency of LED with 100-nm-thick pGaN is ascribed to the improvements of the carrier concentrations and recombination rates.

Cite this article

Download citation ▾
Ming-sheng Xu, Heng Zhang, Quan-bin Zhou, Hong Wang. Effects of p-type GaN thickness on optical properties of GaN-based light-emitting diodes. Optoelectronics Letters 249-252 DOI:10.1007/s11801-016-6075-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenG.-c., FanG.-h.. Optoelectronics Letters, 2014, 10: 250

[2]

LuG., WangB., GeY.-w.. Optoelectronics Letters, 2015, 11: 348

[3]

ZhengmaoY., XiaoyanL., HuiningW., YongzhongW., XiaopengH., ZiwuJ., XiangangX.. Optics Express, 2013, 21: 28531

[4]

ZhangJ., ZhuoX.-J., LiD.-W., RenZ.-W., YiH.-X., TongJ.-H., WangX.-F., ChenX., ZhaoB.-J., LiS.-T.. Superlattices and Microstructures, 2014, 73: 145

[5]

ZhangZ.H., LiuW., JuZ., TanS.T., JiY., KyawZ., ZhangX., WangL., SunX.W., DemirH.V.. Appl. Phys. Lett., 2014, 105: 033506

[6]

LiH.J., KangJ.J., LiP.P., MaJ., WangH., LiangM., LiZ.C., LiJ., YiX.Y., WangG.H.. Appl. Phys. Lett., 2013, 102: 011105

[7]

ZhangZ.H., LiuW., TanS.T., JiY., WangL., ZhuB., ZhangY., LuS., ZhangX., HasanovN.. Appl. Phys. Lett., 2014, 105: 153503

[8]

SunL., WengG.-E., LiangM.-M., YingL.-Y., LvX.-Q., ZhangJ.-Y., ZhangB.-P.. Physica E: Low-dimensional Systems and Nanostructures, 2014, 60: 166

[9]

FujiiT., GaoY., SharmaR., HuE., DenBaarsS., NakamuraS.. Appl. Phys. Lett., 2004, 84: 855

[10]

LinT.-H., WangS.-J., TuY.-C., HungC.-H., LinC.-A., LinY.-C., YouZ.-S.. Solid-State Electronics, 2015, 107: 30

[11]

ShenY.C., WiererJ.J., KramesM.R., LudowiseM.J., MisraM.S., AhmedF., KimA.Y., MuellerG.O., BhatJ.C., StockmanS.A.. Proc. SPIE 5366, Light-Emitting Diodes: Research, Manufacturing, and Applications, 2004, VIII: 20

[12]

LiaoC.-H., ChenC.-Y., ChenH.-S., ChenK.-Y., ChungW.-L., ChangW.-M., HuangJ.-J., YaoY.-F., KiangY.-W., YangC.-C.. IEEE Photonics Technology Letters, 2011, 23: 1757

[13]

SchadS.-S., SchererM., SeybothM., SchweglerV.. Physica Status Solidi A Applied Research, 2001, 188: 127

[14]

LeeJ.W., TakY., KimJ.Y., HongH.G., ChaeS., MinB., JeongH., YooJ., KimJ.R., ParkY.. J. Cryst. Growth, 2011, 315: 263

[15]

APSYS, Crosslight Software Inc., Burnaby, Canada.

[16]

ZhangM., YunF., LiY., DingW., WangH., ZhaoY., ZhangW., ZhengM., TianZ., SuX.. Physica Status Solidi, 2015, 212: 954

[17]

ChengL., WuS., ChenH., XiaC., KongQ.. Optical & Quantum Electronics, 2016, 48: 1

[18]

SchubertE.F.. Light-emitting Diodes, Cambridge University Press, 2006,

[19]

SuzukiM., UenoyamaT., YanaseA.. Physical Review B, 1995, 52: 8132

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/