Effects of p-type GaN thickness on optical properties of GaN-based light-emitting diodes

Ming-sheng Xu, Heng Zhang, Quan-bin Zhou, Hong Wang

Optoelectronics Letters ›› , Vol. 12 ›› Issue (4) : 249-252.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (4) : 249-252. DOI: 10.1007/s11801-016-6075-5
Article

Effects of p-type GaN thickness on optical properties of GaN-based light-emitting diodes

Author information +
History +

Abstract

The influence of p-type GaN (pGaN) thickness on the light output power (LOP) and internal quantum efficiency (IQE) of light emitting diode (LED) was studied by experiments and simulations. The LOP of GaN-based LED increases as the thickness of pGaN layer decreases from 300 nm to 100 nm, and then decreases as the thickness decreases to 50 nm. The LOP of LED with 100-nm-thick pGaN increases by 30.9% compared with that of the conventional LED with 300-nm-thick pGaN. The variation trend of IQE is similar to that of LOP as the decrease of GaN thickness. The simulation results demonstrate that the higher light efficiency of LED with 100-nm-thick pGaN is ascribed to the improvements of the carrier concentrations and recombination rates.

Cite this article

Download citation ▾
Ming-sheng Xu, Heng Zhang, Quan-bin Zhou, Hong Wang. Effects of p-type GaN thickness on optical properties of GaN-based light-emitting diodes. Optoelectronics Letters, , 12(4): 249‒252 https://doi.org/10.1007/s11801-016-6075-5

References

[1]
ChenG.-c., FanG.-h.. Optoelectronics Letters, 2014, 10: 250
CrossRef Google scholar
[2]
LuG., WangB., GeY.-w.. Optoelectronics Letters, 2015, 11: 348
CrossRef Google scholar
[3]
ZhengmaoY., XiaoyanL., HuiningW., YongzhongW., XiaopengH., ZiwuJ., XiangangX.. Optics Express, 2013, 21: 28531
CrossRef Google scholar
[4]
ZhangJ., ZhuoX.-J., LiD.-W., RenZ.-W., YiH.-X., TongJ.-H., WangX.-F., ChenX., ZhaoB.-J., LiS.-T.. Superlattices and Microstructures, 2014, 73: 145
CrossRef Google scholar
[5]
ZhangZ.H., LiuW., JuZ., TanS.T., JiY., KyawZ., ZhangX., WangL., SunX.W., DemirH.V.. Appl. Phys. Lett., 2014, 105: 033506
CrossRef Google scholar
[6]
LiH.J., KangJ.J., LiP.P., MaJ., WangH., LiangM., LiZ.C., LiJ., YiX.Y., WangG.H.. Appl. Phys. Lett., 2013, 102: 011105
CrossRef Google scholar
[7]
ZhangZ.H., LiuW., TanS.T., JiY., WangL., ZhuB., ZhangY., LuS., ZhangX., HasanovN.. Appl. Phys. Lett., 2014, 105: 153503
CrossRef Google scholar
[8]
SunL., WengG.-E., LiangM.-M., YingL.-Y., LvX.-Q., ZhangJ.-Y., ZhangB.-P.. Physica E: Low-dimensional Systems and Nanostructures, 2014, 60: 166
CrossRef Google scholar
[9]
FujiiT., GaoY., SharmaR., HuE., DenBaarsS., NakamuraS.. Appl. Phys. Lett., 2004, 84: 855
CrossRef Google scholar
[10]
LinT.-H., WangS.-J., TuY.-C., HungC.-H., LinC.-A., LinY.-C., YouZ.-S.. Solid-State Electronics, 2015, 107: 30
CrossRef Google scholar
[11]
ShenY.C., WiererJ.J., KramesM.R., LudowiseM.J., MisraM.S., AhmedF., KimA.Y., MuellerG.O., BhatJ.C., StockmanS.A.. Proc. SPIE 5366, Light-Emitting Diodes: Research, Manufacturing, and Applications, 2004, VIII: 20
[12]
LiaoC.-H., ChenC.-Y., ChenH.-S., ChenK.-Y., ChungW.-L., ChangW.-M., HuangJ.-J., YaoY.-F., KiangY.-W., YangC.-C.. IEEE Photonics Technology Letters, 2011, 23: 1757
CrossRef Google scholar
[13]
SchadS.-S., SchererM., SeybothM., SchweglerV.. Physica Status Solidi A Applied Research, 2001, 188: 127
CrossRef Google scholar
[14]
LeeJ.W., TakY., KimJ.Y., HongH.G., ChaeS., MinB., JeongH., YooJ., KimJ.R., ParkY.. J. Cryst. Growth, 2011, 315: 263
CrossRef Google scholar
[15]
APSYS, Crosslight Software Inc., Burnaby, Canada.
[16]
ZhangM., YunF., LiY., DingW., WangH., ZhaoY., ZhangW., ZhengM., TianZ., SuX.. Physica Status Solidi, 2015, 212: 954
CrossRef Google scholar
[17]
ChengL., WuS., ChenH., XiaC., KongQ.. Optical & Quantum Electronics, 2016, 48: 1
CrossRef Google scholar
[18]
SchubertE.F.. Light-emitting Diodes, Cambridge University Press, 2006,
CrossRef Google scholar
[19]
SuzukiM., UenoyamaT., YanaseA.. Physical Review B, 1995, 52: 8132
CrossRef Google scholar

This work has been supported by the National High Technology Research and Development Program of China (No.2014AA032609), the National Natural Science Foundation of China (Nos.61504044, 61404050 and 51502156), the China Postdoctoral Science Foundation (Nos.2015M582384 and 2016T90782), the Major Scientific and Technological Special Project of Guangdong Province (No.2014B010119002), the Fundamental Research Funds for the Central Universities (No.2015ZM074), and the Union Funds of Guizhou Science and Technology Department and Guizhou Minzu University (No.LH20157221).

Accesses

Citations

Detail

Sections
Recommended

/