Fast prediction unit selection method for HEVC intra prediction based on salient regions

Lei Feng , Ming Dai , Chun-lei Zhao , Jing-ying Xiong

Optoelectronics Letters ›› : 316 -320.

PDF
Optoelectronics Letters ›› : 316 -320. DOI: 10.1007/s11801-016-6064-8
Article

Fast prediction unit selection method for HEVC intra prediction based on salient regions

Author information +
History +
PDF

Abstract

In order to reduce the computational complexity of the high efficiency video coding (HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit (PU) size selection method for HEVC based on salient regions is proposed in this paper. We first build a saliency map for each largest coding unit (LCU) to reduce its texture complexity. Secondly, the optimal PU size is determined via a scheme that implements an information entropy comparison among sub-blocks of saliency maps. Finally, we apply the partitioning result of saliency map on the original LCUs, obtaining the optimal partitioning result. Our algorithm can determine the PU size in advance to the angular prediction in intra coding, reducing computational complexity of HEVC. The experimental results show that our algorithm achieves a 37.9% reduction in encoding time, while producing a negligible loss in Bjontegaard delta bit rate (BDBR) of 0.62%.

Cite this article

Download citation ▾
Lei Feng, Ming Dai, Chun-lei Zhao, Jing-ying Xiong. Fast prediction unit selection method for HEVC intra prediction based on salient regions. Optoelectronics Letters 316-320 DOI:10.1007/s11801-016-6064-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SullivanG. J., OhmJ.-R., HanW.-J.. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22: 1649

[2]

SUNL., DAIM., LIG., CHENX.-l., WANGZ.-c., SONGY.-m.. Journal of Optoelectronics ·Laser, 2013, 24: 2205

[3]

BossenF., BrossB., SuhringK., FlynnD.. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22: 1

[4]

ZHANGQ., YUANC.. Journal of Frontiers of Computer Science and Technology, 2014, 8: 537

[5]

Y. Piao, J. H. Min and J. Chen, Encoder Improvement of Unified Intra Prediction, JCTVC-C207, Guangzhou, 166 (2010).

[6]

ZhaoL., ZhangL., MaS., ChenD.. IEEE Visual Communications and Image Process, 2011, 5: 1

[7]

ShenL., ZhangZ., AnP.. IEEE Transactions on Consumer Electronics, 2013, 59: 207

[8]

XIONGJ.. Optical Engineering, 2013, 52: 071504

[9]

HuangY. H., OuT. S., ChenH. H.. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20: 1122

[10]

KimS. H., AllebachJ. P.. IEEE Transactions on Image Processing, 2002, 11: 258

[11]

XuM., DengX., LiS. X., WangZ. L.. IEEE Journal of Selected Topics in Signal Processing, 2014, 8: 475

[12]

ChoS., KimM.. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23: 1555

[13]

QiZ., ChristofK.. Journal of Vision, 2011, 11: 74

[14]

HouX. D., HarelJ., KochC.. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34: 194

[15]

LiangJ.Y., ShiZ. Z.. Fuzziness and Knowledge-Based Systems, 2011, 12: 37

[16]

G. Bjontegaard, Calculation of Average PSNRDifferences between RD-curves, document ITU-T SC16/Q6, VCEG-M33, Texas, 1 (2001).

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/