A higher performance dye-sensitized solar cell based on the modified PMII/EMIMBF4 binary room temperature ionic liquid electrolyte

Wu-yang Wang , Da-peng Cao , Chao Wang , Xiang-yu Zhang , Bao-xiu Mi , Zhi-qiang Gao , Zhong-cheng Liang

Optoelectronics Letters ›› : 245 -248.

PDF
Optoelectronics Letters ›› :245 -248. DOI: 10.1007/s11801-016-6060-z
Article

A higher performance dye-sensitized solar cell based on the modified PMII/EMIMBF4 binary room temperature ionic liquid electrolyte

Author information +
History +
PDF

Abstract

Additives and iodine (I2) are used to modify the binary room temperature ionic liquid (RTIL) electrolyte to enhance the photovoltaic performance of dye-sensitized solar cells (DSSCs). The short-circuit current density (JSC) of 17.89 mA/cm2, open circuit voltage (VOC) of 0.71 V and fill factor (FF) of 0.50 are achieved in the optimal device. An average photoelectric conversion efficiency (PCE) of 6.35% is achieved by optimization, which is over two times larger than that of the parent device before optimization (2.06%), while the maximum PCE can reach up to 6.63%.

Cite this article

Download citation ▾
Wu-yang Wang, Da-peng Cao, Chao Wang, Xiang-yu Zhang, Bao-xiu Mi, Zhi-qiang Gao, Zhong-cheng Liang. A higher performance dye-sensitized solar cell based on the modified PMII/EMIMBF4 binary room temperature ionic liquid electrolyte. Optoelectronics Letters 245-248 DOI:10.1007/s11801-016-6060-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MathewS., YellaA., GaoP., Humphry-BakerR., CurchodB. F. E., Ashari-AstaniN., TavernelliI., RothlisbergerU., NazeeruddinM. K., GrätzelM.. Nature Chemistry, 2014, 6: 242

[2]

HEZ.-m., XIAY.-m., TANGB., WANGQ.. Journal of Optoelectronics·Laser, 2014, 25: 1506

[3]

WANGH.-t., LIY., LIUY.-b., JINY.-s., YANGJ., WUW., XUX.-q.. Journal of Optoelectronics · Laser, 2014, 25: 1870

[4]

ShiD., PootrakulchoteN., LiR. Z., GuoJ., WangY., ZakeeruddinS. M., GrätzelM., WangP.. Journal of Physical Chemistry C, 2008, 112: 17046

[5]

HaoF., LinH., ZhangJ., LiJ.. Journal of Power Sources, 2011, 196: 1645

[6]

LauG. P. S., TsaoH. N., ZakeeruddinS. M., GrätzelM., DysonP. J.. ACS Applied Materials & Interfaces, 2014, 6: 13571

[7]

WangP., ZakeeruddinS. M., MoserJ. E., GrätzelM.. Journal of Physical Chemistry B, 2003, 107: 13280

[8]

WangP., ZakeeruddinS. M., Humphry-BakerR., GrätzelM.. Chemistry and Materials, 2004, 16: 2694

[9]

ChengP., WangW. J., LanT., ChenR. H., WangJ. F., YuJ. N., WuH. X., YangH. J., DengC. S., GuoS. W.. Journal of Photochemistry Photobiology A: Chemistry, 2010, 212: 147

[10]

HaoF., LinH., LiuY. Z., LiJ. B.. Physical Chemistry Chemical Physics, 2011, 13: 6416

[11]

ChangL. Y., LeeC. P., VittalR., LinJ. J., HoK. C.. Journal of Materials Chemistry A, 2013, 1: 3055

[12]

BoschlooG., HäggmanL., HagfeldtA.. Journal of Physical Chemistry B, 2006, 110: 13144

[13]

KusamaH., OritaH., SugiharaH.. Solar Energy Materials and Solar Cells, 2008, 92: 84

[14]

KimJ. Y., KimJ. Y., LeeD. K., KimB., KimH., KoM. J.. Journal of Physical Chemistry C, 2012, 116: 22759

[15]

LiuJ., FuX., CaoD. P., MaoL., WangJ., MuD. H., MiB. X., ZhaoB. M., GaoZ. Q.. Organic Electronics, 2015, 23: 158

[16]

ZhuT. J., MuD. H., QinH. L., SongJ., MiB. X., ZhaoX. Y., GaoZ. Q., HuangW.. Organic Electronics, 2014, 15: 969

[17]

ZhuT. J., LiC., YangW. W., ZhaoX. Y., WangX. L., TangC., MiB. X., GaoZ. Q., HuangW., DengW. W.. Aerosol Science & Technology, 2013, 47: 1302

[18]

ZhaoX. Y., YangW. W., LiC., WangX. L., LimS. L., QiD. C., WangR., GaoZ. Q., MiB. X., ChenZ. K., HuangW., DengW. W.. Solar Energy Materials and Solar Cells, 2015, 134: 140

[19]

BellaF., SaccoA., PuglieseD., LaurentiM., BiancoS.. Journal of Power Sources, 2014, 264: 333

[20]

GorlovM., KlooL.. Dalton Transactions, 2008, 20: 2655

[21]

HagfeldtA., GräetzelM.. Chemical Reviews, 1995, 95: 49

[22]

JeanbourquinX. A., LiX., LawC. H., BarnesP. R. F., BakerR. H., LundP., AsgharM. I., O’ReganB.. Journal of the American Chemical Society, 2014, 136: 7286

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/