Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

Dong-ling Li, Xiao-fei Feng, Zhi-yu Wen, Zheng-guo Shang, Yin She

Optoelectronics Letters ›› , Vol. 12 ›› Issue (4) : 285-289.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (4) : 285-289. DOI: 10.1007/s11801-016-6058-6
Article

Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

Author information +
History +

Abstract

Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (−0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

Cite this article

Download citation ▾
Dong-ling Li, Xiao-fei Feng, Zhi-yu Wen, Zheng-guo Shang, Yin She. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition. Optoelectronics Letters, , 12(4): 285‒289 https://doi.org/10.1007/s11801-016-6058-6

References

[1]
HoexB., van ErvenA. J. M., BoschR. C. M., StalsW. T. M., BijkerM. D., van den OeverP. J., KesselsW. M. M., van de SandenM. C. M.. Progress in Photovoltaics: Research and Applications, 2005, 13: 705
CrossRef Google scholar
[2]
WangS., LennonA., TjahjonoB., MaiL., VoglB., WenhamS.. Solar Energy Materials and Solar Cells, 2012, 99: 226
CrossRef Google scholar
[3]
GAOH.-s., WANGZ.-z., XIEY.-y., GENGZ.-x., KANQ., WANGC.-x., YUANJ., CHENH.-d.. Journal of Optoelectronics · Laser, 2014, 25: 1338
[4]
WanY., McIntoshK. R., ThomsonA.F.. AIP Advances, 2013, 3: 032113
CrossRef Google scholar
[5]
WeiJ., OngP. L., TayF. E. H., IliescuC.. Thin Solid Films, 2008, 516: 5181
CrossRef Google scholar
[6]
SemenovaO., KozelskayaA., Zhi-YongL., Yu-DeY.. Chinese Physics B, 2015, 24: 06801
CrossRef Google scholar
[7]
YangJ., de GuzmanR. C., SalleyS. O., NgK. Y. S., ChenB.-H., ChengM. M.-C.. Journal of Power Sources, 2014, 269: 520
CrossRef Google scholar
[8]
XIONGX.-x., JIANGL.-h., ZENGX.-b., ZHANGX.. Optoelectronics Letters, 2013, 9: 375
CrossRef Google scholar
[9]
LeeS.-E., ParkY.-C.. Journal of Luminescence, 2015, 161: 154
CrossRef Google scholar
[10]
DergezD., SchalkoJ., BittnerA., SchmidU.. Applied Surface Science, 2013, 284: 348
CrossRef Google scholar
[11]
Jiang H., Cao G., Xu C. and Zhang Z., Effects of Residual Stress in the Membrane on the Performance of Surface Micromachining Silicon Nitride Pressure Sensor, 15th International Conference on Electronic Packaging Technology, 664 (2014).
[12]
QinC., YinH.. ECS Transactions, 2012, 44: 411
CrossRef Google scholar
[13]
KaroutaF., VoraK., TianJ., JagadishC.. Journal of Physics D: Applied Physics, 2012, 45: 445301
CrossRef Google scholar
[14]
IliescuC., WeiJ. S., OngP. L., ChenB. T.. Low Stress PECVD SiNx Process for Biomedical Application, CAS 2007 International Semiconductor Conference, 2007, 1: 139
CrossRef Google scholar
[15]
LIT.-w., ZHANGJ.-j., CAOY., HUANGZ.-h., MAJ., NIJ., ZHAOY.. Optoelectronics Letters, 2014, 10: 202
CrossRef Google scholar
[16]
SahR. E., BaumannH., DriadR., WagnerJ.. Journal of The Electrochemical Society, 2010, 157: G33
CrossRef Google scholar
[17]
TarrafA., DaleidenJ., IrmerS., PrasaiD., HillmerH.. Journal of Micromechanics and Microengineering, 2004, 14: 317
CrossRef Google scholar
[18]
Wang Y., Lee J., Thakur B. and Huang J., Dual Frequency Silicon Nitride Film of Low Thermal Budget for Pre-Metal Dielectric Applications in Sub-0.25 µm Devices, IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, 405 (1999).

This work has been supported by the National High Technology Research and Development Program of China (No.2015AA042603), and the Fundamental Research Funds for the Central Universities of China (No.106112014CDJZR160001).

Accesses

Citations

Detail

Sections
Recommended

/