Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

Dong-ling Li , Xiao-fei Feng , Zhi-yu Wen , Zheng-guo Shang , Yin She

Optoelectronics Letters ›› : 285 -289.

PDF
Optoelectronics Letters ›› : 285 -289. DOI: 10.1007/s11801-016-6058-6
Article

Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

Author information +
History +
PDF

Abstract

Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (−0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

Cite this article

Download citation ▾
Dong-ling Li, Xiao-fei Feng, Zhi-yu Wen, Zheng-guo Shang, Yin She. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition. Optoelectronics Letters 285-289 DOI:10.1007/s11801-016-6058-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HoexB., van ErvenA. J. M., BoschR. C. M., StalsW. T. M., BijkerM. D., van den OeverP. J., KesselsW. M. M., van de SandenM. C. M.. Progress in Photovoltaics: Research and Applications, 2005, 13: 705

[2]

WangS., LennonA., TjahjonoB., MaiL., VoglB., WenhamS.. Solar Energy Materials and Solar Cells, 2012, 99: 226

[3]

GAOH.-s., WANGZ.-z., XIEY.-y., GENGZ.-x., KANQ., WANGC.-x., YUANJ., CHENH.-d.. Journal of Optoelectronics · Laser, 2014, 25: 1338

[4]

WanY., McIntoshK. R., ThomsonA.F.. AIP Advances, 2013, 3: 032113

[5]

WeiJ., OngP. L., TayF. E. H., IliescuC.. Thin Solid Films, 2008, 516: 5181

[6]

SemenovaO., KozelskayaA., Zhi-YongL., Yu-DeY.. Chinese Physics B, 2015, 24: 06801

[7]

YangJ., de GuzmanR. C., SalleyS. O., NgK. Y. S., ChenB.-H., ChengM. M.-C.. Journal of Power Sources, 2014, 269: 520

[8]

XIONGX.-x., JIANGL.-h., ZENGX.-b., ZHANGX.. Optoelectronics Letters, 2013, 9: 375

[9]

LeeS.-E., ParkY.-C.. Journal of Luminescence, 2015, 161: 154

[10]

DergezD., SchalkoJ., BittnerA., SchmidU.. Applied Surface Science, 2013, 284: 348

[11]

Jiang H., Cao G., Xu C. and Zhang Z., Effects of Residual Stress in the Membrane on the Performance of Surface Micromachining Silicon Nitride Pressure Sensor, 15th International Conference on Electronic Packaging Technology, 664 (2014).

[12]

QinC., YinH.. ECS Transactions, 2012, 44: 411

[13]

KaroutaF., VoraK., TianJ., JagadishC.. Journal of Physics D: Applied Physics, 2012, 45: 445301

[14]

IliescuC., WeiJ. S., OngP. L., ChenB. T.. Low Stress PECVD SiNx Process for Biomedical Application, CAS 2007 International Semiconductor Conference, 2007, 1: 139

[15]

LIT.-w., ZHANGJ.-j., CAOY., HUANGZ.-h., MAJ., NIJ., ZHAOY.. Optoelectronics Letters, 2014, 10: 202

[16]

SahR. E., BaumannH., DriadR., WagnerJ.. Journal of The Electrochemical Society, 2010, 157: G33

[17]

TarrafA., DaleidenJ., IrmerS., PrasaiD., HillmerH.. Journal of Micromechanics and Microengineering, 2004, 14: 317

[18]

Wang Y., Lee J., Thakur B. and Huang J., Dual Frequency Silicon Nitride Film of Low Thermal Budget for Pre-Metal Dielectric Applications in Sub-0.25 µm Devices, IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, 405 (1999).

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/