Research on structure of Cu2ZnSn(S, Se)4 thin films with high Sn-related phases

Peng-yu Li, Yu-ming Xue, Hao Liu, Dan Xia, Dian-you Song, Shao-jun Feng, Hai-tao Sun, Bing-bing Yu, Zai-xiang Qiao

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 446-449.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (6) : 446-449. DOI: 10.1007/s11801-016-6055-9
Article

Research on structure of Cu2ZnSn(S, Se)4 thin films with high Sn-related phases

Author information +
History +

Abstract

Cu2ZnSn(S, Se)4 (CZTSSe) thin films were deposited on flexible substrates by three evaporation processes at high temperature. The chemical compositions, microstructures and crystal phases of the CZTSSe thin films were respectively characterized by inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman scattering spectrum. The results show that the single-step evaporation method at high temperature yields CZTSSe thin films with nearly pure phase and high Sn-related phases. The elemental ratios of Cu/(Zn+Sn)=1.00 and Zn/Sn=1.03 are close to the characteristics of stoichiometric CZTSSe. There is the smooth and uniform crystalline at the surface and large grain size at the cross section for the films, and no other phases exist in the film by XRD and Raman shift measurement. The films are no more with the Sn-related phase deficiency.

Cite this article

Download citation ▾
Peng-yu Li, Yu-ming Xue, Hao Liu, Dan Xia, Dian-you Song, Shao-jun Feng, Hai-tao Sun, Bing-bing Yu, Zai-xiang Qiao. Research on structure of Cu2ZnSn(S, Se)4 thin films with high Sn-related phases. Optoelectronics Letters, , 12(6): 446‒449 https://doi.org/10.1007/s11801-016-6055-9

References

[1]
ShyjuT.S., AnandhiS., SuriakarthickR.. Journal of Solid State Chemistry, 2015, 227: 165
CrossRef Google scholar
[2]
ShinB., GunawanO., ZhuY.. Progress in Photovoltaics Research & Applications, 2013, 21: 72
CrossRef Google scholar
[3]
Repins. Ingrid and Beall, Solar Energy Materials & Solar Cells, 2012, 101: 154
CrossRef Google scholar
[4]
WangK., GunawanO., TodorovT.. Appl. Phys. Lett., 2010, 97: 143508
CrossRef Google scholar
[5]
Swati JP., Vaibhav CL., Dong-WeonL.. Optical Materials, 2016, 58: 418
CrossRef Google scholar
[6]
WeberA., MainzR., SchockH. W.. J. Appl. Phys., 2010, 107: 013516
CrossRef Google scholar
[7]
RedingerA., SiebentrittS.. Appl. Phys. Lett., 2010, 97: 092111
CrossRef Google scholar
[8]
RedingerA., BergD. M., DaleP. J., SiebentrittS.. J. Am. Chem. Soc., 2011, 133: 3320
CrossRef Google scholar
[9]
MatsushitaH., MaedaT., KatsuiA.. Journal of Crystal Growth, 2000, 208: 416
CrossRef Google scholar
[10]
JingG., Wen-HuiZ., Ying-LiP.. Solar Energy Materials & Solar Cells, 2016, 155: 209
CrossRef Google scholar
[11]
SaloméP.M.P., FernandesP.A., da CunhaA.F.. Thin Solid Films, 2009, 517: 2531
CrossRef Google scholar
[12]
AhnS., JungS., GwakJ.. Appl. Phys. Lett., 2010, 97: 021905
CrossRef Google scholar
[13]
AmiriN. B. M., PostnikovA.. Phys Rev B, 2010, 82: 1616
CrossRef Google scholar
[14]
EnnaouiA., Lux-SteinerM., WeberA.. Thin Solid Films, 2009, 517: 2511
CrossRef Google scholar
[15]
MorellG., KatiyarR. S., WeiszS. Z.. Appl. Phys. Lett., 1996, 69: 987
CrossRef Google scholar
[16]
SaloméP. M. P., MalaquiasJ., FernandesP. A.. Solar Energy Materials & Solar Cells, 2012, 101: 147
CrossRef Google scholar
[17]
GanchevM., IljinaJ., KaupmeesL.. Thin Solid Films, 2011, 519: 7394
CrossRef Google scholar

This work has been supported by the National High Technology Research and Development Program of China (No.2012AA050701), and the Innovation and Entrepreneurship Training Program for College Students in Tianjin (No.201410060036).

Accesses

Citations

Detail

Sections
Recommended

/