Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

Shao-qian Zhang , Petre Němec , Virginie Nazabal , Yu-qi Jin

Optoelectronics Letters ›› : 199 -202.

PDF
Optoelectronics Letters ›› : 199 -202. DOI: 10.1007/s11801-016-6012-7
Article

Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

Author information +
History +
PDF

Abstract

Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

Cite this article

Download citation ▾
Shao-qian Zhang, Petre Němec, Virginie Nazabal, Yu-qi Jin. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method. Optoelectronics Letters 199-202 DOI:10.1007/s11801-016-6012-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YüceE., CtistisG., ClaudonJ., GérardJ.-M., VosW. L.. Optics Express, 2016, 24: 239

[2]

NaweedA., GoldbergD., MenonV. M.. Optics Express, 2014, 22: 18818

[3]

ChangS.-W.. Optics Express, 2012, 20: 2516

[4]

LiuY., YiL.. Journal of Applied Physics, 2014, 116: 223102

[5]

BAIY., YANF.-p., LIUS., TANS.-y., WENX.-d.. Optoelectronics Letters, 2015, 11: 421

[6]

ShenW., CathelinaudM., LequimeM., NazabalV., LiuX.. Optics Communications, 2008, 281: 3726

[7]

ShenW. D., CathelinaudM., LequimeM. D., CharpentierF., NazabalV.. Optics Express, 2008, 16: 373

[8]

ShpotyukY., IngramA., ShpotyukO., DziedzicA., Boussard-PledelC., BureauB.. Nanoscale Research Letters, 2016, 11: 1237

[9]

LIJ., CHENF., SHENX., DAIS.-x., XUT.-f., NIEQ.-h.. Optoelectronics Letters, 2015, 11: 203

[10]

MoizanV., NazabalV., TrolesJ., HouizotP., AdamJ.-L., DoualanJ.-L., MoncorgéR., SmektalaF., GadretG., PitoisS., CanatG.. Optical Materials, 2008, 31: 39

[11]

CuiS., Boussard-PlédelC., LucasJ., BureauB.. Optics Express, 2014, 22: 21253

[12]

NazabalV., NemecP., JurdycA. M., ZhangS., CharpentierF., LhermiteH., CharrierJ., GuinJ. P., MoreacA., FrumarM., AdamJ. L.. Thin Solid Films, 2010, 518: 4941

[13]

LequimeM., ParmentierR., LemarchandF., AmraC.. Applied Optics, 2002, 41: 3277

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/