Al-doping effects on the photovoltaic performance of inverted polymer solar cells

Xuan Yu , Ya-feng Shi , Xiao-ming Yu , Jian-jun Zhang , Ya-ming Ge , Li-qiao Chen , Hong-jun Pan

Optoelectronics Letters ›› : 106 -109.

PDF
Optoelectronics Letters ›› : 106 -109. DOI: 10.1007/s11801-016-6003-8
Article

Al-doping effects on the photovoltaic performance of inverted polymer solar cells

Author information +
History +
PDF

Abstract

The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor (FF) simultaneously, and the power conversion efficiency (PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

Cite this article

Download citation ▾
Xuan Yu, Ya-feng Shi, Xiao-ming Yu, Jian-jun Zhang, Ya-ming Ge, Li-qiao Chen, Hong-jun Pan. Al-doping effects on the photovoltaic performance of inverted polymer solar cells. Optoelectronics Letters 106-109 DOI:10.1007/s11801-016-6003-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HeZ., ZhongC., SuS., XuM., WuH., CaoY.. Nature Photonics, 2012, 6: 591

[2]

YuX., YuX.M., HuZ., ZhangJ., ZhaoG., ZhaoY.. Optoelectronics Letters, 2013, 9: 274

[3]

ChalalD., GaruzR., BenachourD., BoucléJ., RatierB.. Synthetic Metals, 2016, 212: 161

[4]

HuangJ., YinZ., ZhengQ.. Energy Environ. Sci., 2011, 4: 3861

[5]

LiangZ., ZhangQ., WiranwetchayanO., XiJ., YangZ., ParkK., LiC., CaoG.. Advanced Functional Materials, 2012, 22: 2194

[6]

YuX., YuX.M., ZhangJ., PanH.. Optoelectronics Letters, 2015, 11: 329

[7]

SharmaA., IonescuM., AnderssonG.G., LewisD.A.. Solar Energy Materials and Solar Cells, 2013, 115: 64

[8]

OhH., KrantzJ., LitzovI., StubhanT., PinnaL., BrabecC.J.. Solar Energy Materials and Solar Cells, 2011, 95: 2194

[9]

LuZ., ChenX., ZhouJ., JiangZ., HuangS., ZhuF., PiaoX., SunZ.. Organic Electronics, 2015, 17: 364

[10]

ChenD., ZhangC., WangZ., ZhangJ., TangS., WeiW., SunL., HaoY.. Organic Electronics, 2014, 15: 3006

[11]

YuX., YuX.M., ZhangJ., HuZ., ZhaoG., ZhaoY.. Solar Energy Materials and Solar Cells, 2014, 121: 28

[12]

ThambiduraiM., KimJ. Y., KangC., MuthukumarasamyN., SongH.-J., SongJ., KoY., VelauthapillaiD., LeeC.. Renewable Energy, 2014, 66: 433

[13]

ThambiduraiM., KimJ. Y., SongJ., KoY., MuthukumarasamyN., VelauthapillaiD., LeeC.. Solar Energy, 2014, 106: 95

[14]

ChenM.-H., KuoY.-C., LinH.-H., ChaoY.-P., WongM.-S.. Journal of Power Sources, 2015, 275: 274

[15]

ApriliaA., WulandariP., SuendoV., HermanR., FujiiA., OzakiM.. Solar Energy Materials and Solar Cells, 2013, 111: 181

[16]

StubhanT., OhH., PinnaL., KrantzJ., LitzovI., BrabecC. J.. Organic Electronics, 2011, 12: 1539

[17]

YuX., YuX.M., ZhangJ., ZhaoG., NiJ., CaiH., ZhaoY.. Solar Energy Materials and Solar Cells, 2014, 128: 307

[18]

VerbakelF., MeskersS. C. J., JanssenR. A. J.. Journal of Applied Physics, 2007, 102: 083701

[19]

MusatV., TeixeiraB., FortunatoE., MonteiroR.C.C., VilarinhoP.. Surf. Coat. Technol., 2004, 180: 659

[20]

MusatV., TeixeiraB., FortunatoE., MonteiroR.C.C.. Thin Solid Films, 2006, 502: 219

[21]

AlamM. J., CameronD. C.. J. Vac. Sci. Technol. A, 2001, 19: 1642

[22]

YuX., YuX.M., ZhangJ., PanH.. Materials Letters, 2015, 161: 624

[23]

OhyamaM., KozukaH., YokoT.. J. Am. Ceram. Soc., 1998, 81: 1622

[24]

YuP. C., ChangC. H., SuM. S., HsuM. H., WeiK. H.. Appl. Phys. Lett., 2010, 96: 153307

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/