No-reference image quality assessment based on nonsubsample shearlet transform and natural scene statistics

Guan-jun Wang , Zhi-yong Wu , Hai-jiao Yun , Ming Cui

Optoelectronics Letters ›› : 152 -156.

PDF
Optoelectronics Letters ›› : 152 -156. DOI: 10.1007/s11801-016-5276-2
Article

No-reference image quality assessment based on nonsubsample shearlet transform and natural scene statistics

Author information +
History +
PDF

Abstract

A novel no-reference (NR) image quality assessment (IQA) method is proposed for assessing image quality across multifarious distortion categories. The new method transforms distorted images into the shearlet domain using a non-subsample shearlet transform (NSST), and designs the image quality feature vector to describe images utilizing natural scenes statistical features: coefficient distribution, energy distribution and structural correlation (SC) across orientations and scales. The final image quality is achieved from distortion classification and regression models trained by a support vector machine (SVM). The experimental results on the LIVE2 IQA database indicate that the method can assess image quality effectively, and the extracted features are susceptive to the category and severity of distortion. Furthermore, our proposed method is database independent and has a higher correlation rate and lower root mean squared error (RMSE) with human perception than other high performance NR IQA methods.

Cite this article

Download citation ▾
Guan-jun Wang, Zhi-yong Wu, Hai-jiao Yun, Ming Cui. No-reference image quality assessment based on nonsubsample shearlet transform and natural scene statistics. Optoelectronics Letters 152-156 DOI:10.1007/s11801-016-5276-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SheikhH. R., BovikA. C., CormackL.. IEEE Transactions on Image Processing, 2005, 14: 1918

[2]

BrandaoT., QueluzM. P.. Signal Processing, 2008, 88: 822

[3]

MittalA., MuralidharG. S., BovikA. C.. IEEE Signal Processing Letters, 2012, 19: 75

[4]

SangQ. B., LiangD. L., WuX. J., LiC. F.. Journal of Optoelectronics·Laser, 2014, 25: 595

[5]

ZhouL. Y., ZhangZ. B.. Optik, 2014, 125: 5677

[6]

NarvekarN. D., KaramL. J.. IEEE Transactions on Image Processing, 2011, 20: 2678

[7]

LiY., PoL. M., XuX., FengL.. Signal Processing Image Communication, 2014, 29: 748

[8]

MoorthyA. K., BovikA. C.. IEEE Signal Processing Letters, 2010, 17: 513

[9]

MoorthyA. K., BovikA. C.. IEEE Transactions on Image Processing, 2011, 20: 3350

[10]

SaadM. A., BovikA. C., CharrierC.. IEEE Transactions on Image Processing, 2012, 21: 3339

[11]

MittalA., MoorthyA. K., BovikA. C.. IEEE Transactions on Image Processing, 2012, 21: 4695

[12]

ZhangY., ChandlerD. M.. Journal of Electronic Imaging, 2013, 22: 043025

[13]

YangH. Y., WangX. Y., NiuP. P., LiuY. C.. Neural Networks, 2014, 57: 152

[14]

LasmarN. E., StitouY., BerthoumieuY.. Multiscale Skewed Heavy Tailed Model for Texture Analysis, 2009, 2281

[15]

LiuL. X., DongH. P., HuangH., BovikA. C.. Signal Processing Image Communication, 2014, 29: 494

[16]

H. R. Sheikh, Z. Wang, L. Cormack and A. C. Bovik, LIVE Image Quality Assessment Database, http://live.ece.utexas.edu/research/quality.

[17]

ChangC. C., LinC. J.. Acm. Transactions on Intelligent Systems & Technology, 2011, 2: 389

[18]

WangZ., BovikA. C., SheikhH. R., SimoncelliE. P.. IEEE Transactions on Image Processing, 2004, 13: 600

[19]

PonomarenkoN., LukinV., ZelenskyA., EgiazarianK., CarliM., BattistiF.. Advances of Modern Radioelectronics, 2009, 10: 30

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/