A measurement-device-independent quantum key distribution protocol with a heralded single photon source

Yuan-yuan Zhou, Xue-jun Zhou, Bin-bin Su

Optoelectronics Letters ›› , Vol. 12 ›› Issue (2) : 148-151.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (2) : 148-151. DOI: 10.1007/s11801-016-5275-3
Article

A measurement-device-independent quantum key distribution protocol with a heralded single photon source

Author information +
History +

Abstract

With a heralded single photon source (HSPS), a measurement-device-independent quantum key distribution (MDIQKD) protocol is proposed, combined with a three-intensity decoy-state method. HSPS has the two-mode characteristic, one mode is used as signal mode, and the other is used as heralded mode to reduce the influence of the dark count. The lower bound of the yield and the upper bound of the error rate are deduced and the performance of the MDI-QKD protocol with an HSPS is analyzed. The simulation results show that the MDI-QKD protocol with an HSPS can achieve a key generation rate and a secure transmission distance which are close to the theoretical limits of the protocol with a single photon source (SPS). Moreover, the key generation rate will improve with the raise of the senders’ detection efficiency. The key generation rate of the MDI-QKD protocol with an HSPS is a little less than that of the MDI-QKD protocol with a weak coherent source (WCS) in the close range, but will exceed the latter in the far range. Furthermore, a farther transmission distance is obtained due to the two-mode characteristic of HSPS.

Cite this article

Download citation ▾
Yuan-yuan Zhou, Xue-jun Zhou, Bin-bin Su. A measurement-device-independent quantum key distribution protocol with a heralded single photon source. Optoelectronics Letters, , 12(2): 148‒151 https://doi.org/10.1007/s11801-016-5275-3

References

[1]
BennettC. H., BrassardG.Quantum Cryptography: Public Key Distribution and Coin TossingProceedings of IEEE International Conference on Computers, 1984,
[2]
ZhouY. Y., ZhangH. Q., ZhouX. J., TianP. G.. Acta Phys. Sin., 2013, 62: 200302
[3]
ZhouY. Y., ZhouX. J., TianP. G., WangY. J.. Chin. Phys. B, 2013, 22: 010305
CrossRef Google scholar
[4]
ZhouY. Y., ZhouX. J.. Acta Phys. Sin., 2011, 60: 100301
[5]
ZhouY. Y., ZhouX. J.. Optoelectron. Lett., 2015, 11: 0149
CrossRef Google scholar
[6]
WangQ., ChenW., XavierG., SwilloM., ZhangT., SaugeS., TengnerM., HanZ. F., GuoG. C., KarlssonA.. Phys. Rev. Lett., 2008, 100: 090501
CrossRef Google scholar
[7]
WangX. B.. Phys. Rev. Lett., 2005, 94: 230503
CrossRef Google scholar
[8]
HwangW. Y.. Phys. Rev. Lett., 2003, 91: 057901
CrossRef Google scholar
[9]
MakarovV.. New J. Modern Opt., 2009, 11: 065003
[10]
LarsL., CarlosW., ChristofferW.. Nature Photonics, 2000, 4: 686
[11]
MakarovV., AnisimovA.. Phys. Rev. A, 2006, 74: 022313
CrossRef Google scholar
[12]
LoH. K., CurtyM., QiB.. Phys. Rev. Lett., 2012, 108: 130503
CrossRef Google scholar
[13]
MaX. F., MohsenR.. Phys. Rev. A, 2012, 86: 062319
CrossRef Google scholar
[14]
SunS. H., GaoM., LiC. Y., LiangL. M.. Phys. Rev. A, 2013, 87: 052329
CrossRef Google scholar
[15]
XuF. H., CurtyM., QiB., LoH. K.. New J. Phys., 2013, 15: 113007
CrossRef Google scholar
[16]
ShanY. Z., SunS. H., MaX. C., JiangM. S., ZhouY. L., LiangL. M.. Phys. Rev. A, 2014, 90: 042334
CrossRef Google scholar
[17]
DongC., ZhaoS. H., ZhaoW. H., ShiL., ZhaoG. H.. Acta Phys. Sin., 2014, 63: 030302
[18]
LiuY., ChenT. Y., WangL. J., LaoH., ShentuG. L., WianJ., CuiK., YinH. L., LiuN. L., LiL., MaX. F., PeleJ. S., FejerM. M., ZhangQ., PanJ. W.. Phys. Rev. Lett., 2013, 111: 130502
CrossRef Google scholar
[19]
TangZ., LiaoZ., XuF., QiB., QianL., LoH. K.. Phys. Rev. Lett., 2014, 112: 190503
CrossRef Google scholar
[20]
TangY. L., YinH. L., ChenS. J., LiuY., ZhangW. J., JiangX., ZhangL., WangJ., YouL. X., GuanJ. Y., YangD. X., WangZ., LiangH., ZhangZ., ZhouN., MaX. F., ChenT. Y., ZhangQ., PanJ. W.. Phys. Rev. Lett., 2014, 113: 190501
CrossRef Google scholar
[21]
WangQ., WangX. B., GuoG. C.. Phys. Rev. A, 2007, 75: 012312
CrossRef Google scholar
[22]
MauererW., SilberhornC.. Phys. Rev. A, 2007, 75: 050305
CrossRef Google scholar
[23]
AdachiY., YamamotoT., KoashiM., ImotoN.. Phys. Rev. Lett., 2007, 99: 180503
CrossRef Google scholar
[24]
WangQ., ChenW., XavierG., SwilloM., ZhangT., SaugeS., TengnerM., HanZ. F., GuoG. C., KarlssonA.. Phys. Rev. Lett., 2008, 100: 090501
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61302099).

Accesses

Citations

Detail

Sections
Recommended

/