TEM study of dislocations structure in In0.82Ga0.18As/InP heterostructure with InGaAs as buffer layer

Liang Zhao , Zuo-xing Guo , De-zeng Yuan , Qiu-lin Wei , Lei Zhao

Optoelectronics Letters ›› : 192 -194.

PDF
Optoelectronics Letters ›› : 192 -194. DOI: 10.1007/s11801-016-5272-6
Article

TEM study of dislocations structure in In0.82Ga0.18As/InP heterostructure with InGaAs as buffer layer

Author information +
History +
PDF

Abstract

In order to improve the quality of detector, InxGa1−xAs (x=0.82) buffer layer has been introduced in In0.82Ga0.18As/InP heterostructure. Dislocation behavior of the multilayer is analyzed through plane and cross section [110] by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The dislocations are effectively suppressed in InxGa1−xAs (x=0.82) buffer layer, and the density of dislocations in epilayer is reduced obviously. No lattice mismatch between buffer layer and epilayer results in no misfit dislocation (MD). The threading dislocations (TDs) are directly related to the multiplication of the MDs in buffer layer.

Cite this article

Download citation ▾
Liang Zhao, Zuo-xing Guo, De-zeng Yuan, Qiu-lin Wei, Lei Zhao. TEM study of dislocations structure in In0.82Ga0.18As/InP heterostructure with InGaAs as buffer layer. Optoelectronics Letters 192-194 DOI:10.1007/s11801-016-5272-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhengF., ZhuG., LiuX.F., WangC., SunZ.B., ZhaiG.J.. Optoelectronics Letters, 2015, 11: 121

[2]

AvakyantsL., BokovP.Y., KolmakovaT., ChervyakoA.. Semiconductors, 2004, 38: 1384

[3]

JinX., NakaharaH., SaitohK., SakaT., UjiharaT., TanakaN., TakedaY.. Journal of Crystal Growth, 2012, 353: 84

[4]

LiuL.S.. Optoelectronics Letters, 2010, 6: 191

[5]

GeiszJ.F., KurtzS., WanlassM.W., WardJ.S., DudaA., FriedmanD.J., OlsonJ.M., McMahonW.E., MoriartyT.E., KiehlJ.T.. Applied Physics Letters, 2007, 91: 023502

[6]

AvakyantsL., BokovP.Y., GalievG., KaminskiiV., Kul’bachinskiiV., MokerovV., ChervyakovA.. Optics and Spectroscopy, 2002, 93: 857

[7]

HostutM., AlyorukM., TanselT., KilicA., TuranR., AydinliA., ErgunY.. Superlattices and Microstructures, 2015, 79: 116

[8]

TounsiN., HabchiM.M., ChineZ., RebeyA., El JaniB.. Superlattices and Microstructures, 2013, 59: 133

[9]

ZhangT., MiaoG., JinY., JiangH., LiZ., SongH.. Journal of Alloys and Compounds, 2008, 458: 363

[10]

OeK.. Journal of Crystal Growth, 2000, 219: 10

[11]

WangS., WangW., ZhuH., ZhaoL., ZhangR., ZhouF., ShuH., WangR.. Journal of Crystal Growth, 2004, 260: 464

[12]

ZhuY., NiH.Q., WangH.L., HeJ.F., LiM.F., ShangX.J., NiuZ.C.. Optoelectronics Letters, 2011, 7: 325

[13]

MathisS.K., ChavarkarP., AndrewsA.M., MishraU.K., SpeckJ.S.. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2000, 18: 2066

[14]

GutiérrezM., GonzálezD., AragónG., HopkinsonM., GarcíaR.. Materials Science and Engineering: B, 2001, 80: 27

[15]

MawstL.J., KirchJ.D., ChangC.C., KimT., GarrodT., BotezD.. Journal of Crystal Growth, 2013, 370: 230

[16]

ZhaoL., SunJ.G., GuoZ.X., MiaoG.Q.. Materials Letters, 2013, 106: 222

[17]

WongL.H., LiuJ.P., RomanatoF., WongC.C., FooY.L.. Applied Physics Letters, 2007, 90: 061913

[18]

WosińskiT., FigielskiT., MąkosaA., DobrowolskiW., PelyaO., PéczB.. Materials Science and Engineering: B, 2002, 91: 367

[19]

KimJ., YunE., YuJ., ParkK., ChaiS., YangJ., ChoiS.. Materials Letters, 2002, 53: 446

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/