Single-/dual-wavelength switchable and tunable compound-cavity erbium-doped fiber laser with super-narrow linewidth

Ting Feng , Feng-ping Yan , Shuo Liu

Optoelectronics Letters ›› : 119 -123.

PDF
Optoelectronics Letters ›› :119 -123. DOI: 10.1007/s11801-016-5260-x
Article

Single-/dual-wavelength switchable and tunable compound-cavity erbium-doped fiber laser with super-narrow linewidth

Author information +
History +
PDF

Abstract

A single-/dual-wavelength switchable and tunable erbium-doped fiber laser (EDFL) with super-narrow linewidth has been proposed and experimentally demonstrated at room temperature. The fiber laser is based on a compound cavity simply composed of a ring main cavity and a two-ring subring cavity (TR-SC). Regardless of single- or dual-wavelength operation, the EDFL could always work well in single-longitudinal-mode (SLM) state at every oscillating wavelength. In dual-wavelength operation, the spacing could be tuned from 0 nm to 4.83 nm. In single-wavelength operation, the EDFL could lase at a fixed wavelength of 1 543.65 nm or another wavelength with a tunable range of 4.83 nm. The super-narrow linewidths of 550 Hz and 600 Hz for two wavelengths are obtained. The proposed EDFL has potential applications in microwave/terahertz-wave generation and high-precision distributed fiber optical sensing.

Cite this article

Download citation ▾
Ting Feng, Feng-ping Yan, Shuo Liu. Single-/dual-wavelength switchable and tunable compound-cavity erbium-doped fiber laser with super-narrow linewidth. Optoelectronics Letters 119-123 DOI:10.1007/s11801-016-5260-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SunQ., WangJ., TongW., LuoJ., LiuD.. Appl. Phys. B, 2012, 106: 373

[2]

LiuX.. IEEE Photon. Technol. Lett., 2007, 19: 632

[3]

WangF., BiW.H., JiangP., WuY., FuX.H.. J. Optoelectron. Laser, 2015, 26: 1435

[4]

FengT., YanF., LiuS., PengW., TanS., BaiY., BaiY.. Laser Phys., 2014, 24: 085101

[5]

LiuX., YangX., LuF., NgJ., ZhouX., LuC.. Opt. Express, 2005, 13: 142

[6]

CaoZ., ZhangZ., ShuiT., JiX., WangR., YinC., YuB.. Opt. Laser Technol., 2014, 56: 137

[7]

LiQ., YanF., PengW., FengT., FengS., TanS., LiuP., RenW.. Opt. Express, 2012, 20: 23684

[8]

YangY.H., HuJ., LiuX.J., JinW.. J. Optoelectron. Laser, 2014, 25: 1647

[9]

ShenY., QiuY., WuB., ZhaoW., ChenS., SunT., GrattanK.T.V.. Opt. Express, 2007, 15: 363

[10]

HeX., FangX., LiaoC., WangD.N., SunJ.. Opt. Express, 2009, 17: 21773

[11]

LinH., MaL., HuY., HuZ., YaoQ.. Opt. Lasers Eng., 2013, 51: 822

[12]

CaoY., ChenL., LuN., TongZ.R.. J. Optoelectron. Laser, 2015, 26: 9

[13]

TiegangS., YubinG., TianshuW., JiayuH., LeZ.. Opt. Fiber Technol., 2014, 20: 235

[14]

FengT., YanF., LiQ., PengW., FengS., WenX., LiuP., TanS.. Chin. Phys. Lett., 2012, 29: 104205

[15]

ZhangJ., YueC.-Y., SchinnG.W., ClementsW.R.L., LitJ.W.Y.. J. Lightwave Technol., 1996, 14: 104

[16]

FengS., MaoQ., TianY., MaY., LiW., WeiL.. IEEE Photon. Technol. Lett., 2013, 25: 323

[17]

FengT., YanF., LiQ., PengW., FengS., TanS., WenX.. Chinese Phys. B, 2013, 22: 014208

[18]

WangF., XuE., DongJ., ZhangX.. Opt. Commun., 2011, 284: 2337

[19]

WangT., LiangG., MiaoX., ZhouX., LiQ.. Laser Phys., 2012, 22: 948

[20]

TanS., YanF., LiQ., PengW., LiuS., FengT., ChangF.. Laser Phys., 2013, 23: 075112

[21]

SulaimanA., HarunS.W., MuhammadM.Z., AhmadH.. IEEE J. Quantum Electron., 2013, 49: 586

[22]

YinB., FengS., LiuZ., BaiY., JianS.. Opt. Express, 2014, 22: 22528

[23]

KimR.K., ChuS., HanY.-G.. IEEE Photon. Technol. Lett., 2012, 24: 521

[24]

ZhouM., GeorgeS., GillianW.. J. Lightwave Technol., 2006, 24: 2179

[25]

YehC.H., HuangT.T., ChienH.C., KoC.H., ChiS.. Opt. Express, 2007, 15: 382

[26]

LemieuxJ.F., BellemareA., LatrasseC., TetuM.. Electron. Lett., 1999, 35: 904

[27]

LiuX., ZhouX., LuC.. Opt. Lett., 2005, 30: 2257

PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

/