GaN-based light emitting diodes on nano-hole patterned sapphire substrate prepared by three-beam laser interference lithography

Wei-hua Sang , Lu Lin , Long Wang , Jia-hua Min , Jian-jun Zhu , Min-rui Wang

Optoelectronics Letters ›› : 178 -181.

PDF
Optoelectronics Letters ›› : 178 -181. DOI: 10.1007/s11801-016-5251-y
Article

GaN-based light emitting diodes on nano-hole patterned sapphire substrate prepared by three-beam laser interference lithography

Author information +
History +
PDF

Abstract

Nano-hole patterned sapphire substrates (NHPSSs) were successfully prepared using a low-cost and high-efficiency approach, which is the laser interference lithography (LIL) combined with reactive ion etching (RIE) and inductively coupled plasma (ICP) techniques. Gallium nitride (GaN)-based light emitting diode (LED) structure was grown on NHPSS by metal organic chemical vapor deposition (MOCVD). Photoluminescence (PL) measurement was conducted to compare the luminescence efficiency of the GaN-based LED structure grown on NHPSS (NHPSS-LED) and that on unpatterned sapphire substrates (UPSS-LED). Electroluminescence (EL) measurement shows that the output power of NHPSS-LED is 2.3 times as high as that of UPSS-LED with an injection current of 150 mA. Both PL and EL results imply that NHPSS has an advantage in improving the crystalline quality of GaN epilayer and light extraction efficiency of LEDs at the same time.

Cite this article

Download citation ▾
Wei-hua Sang, Lu Lin, Long Wang, Jia-hua Min, Jian-jun Zhu, Min-rui Wang. GaN-based light emitting diodes on nano-hole patterned sapphire substrate prepared by three-beam laser interference lithography. Optoelectronics Letters 178-181 DOI:10.1007/s11801-016-5251-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FujiiT., GaoY., SharmaR., HuE. L., DenBaarsS. P., NakamuraS.. Applied Physics Letters, 2004, 84: 855

[2]

NakadaN., NakajiM., IshikawaH., EgawaT., UmenoM., JimboT.. Applied Physics Letter, 2000, 76: 1804

[3]

GuoH., ChenH., ZhangX., ZhangP., LiuJ., LiuH., CuiY.. Optical Engineering, 2013, 52: 63402

[4]

KimJ.-Y., KwonM.-K., ParkS.-J., KimS. H., LeeK.-D.. Applied Physics Letters, 2010, 96: 251103

[5]

TadatomoK., OkagawaH., OhuchiY., TsunekawaT., ImadaY., KatoM., TaguchiT.. Japanese Journal of Applied Physics, 2001, 40: L583

[6]

TsaiP. C., ChuangR. W., SuY. K.. Journal of Lightwave Technology, 2007, 25: 591

[7]

LeeJ.-H., OhJ. T., KimY. C., LeeJ.-H.. IEEE Photonics Technology Letters, 2008, 220: 1563

[8]

YamadaM., MitaniT., NarukawaY., ShiojiS., NikiI., SonobeS., DeguchiK., SanoM., MukaiT.. Japanese Journal of Applied Physics, 2002, 41: L1431

[9]

HuangH. W., LinC. H., HuangJ. K., LeeK. Y., LinC. F., YuC. C., TsaiJ. Y., HsuehR., KuoH. C., WangS. C.. Materials Science and Engineering: B, 2009, 164: 76

[10]

XiaD., KuZ., LeeS. C., BrueckS. R.. Advanced Materials, 2011, 23: 147

[11]

ZhangY., WeiT., WangJ., FanC., ChenY., HuQ., LiJ.. Journal of Crystal Growth, 2014, 394: 7

[12]

ChoJ.-Y., LeeH.. Journal of Photopolymer Science and Technology, 2015, 28: 5

[13]

Martín-FabianiI., RiedelS., RuedaD. R., SiegelJ., BonebergJ., EzquerraT. A., AuroraN.. American Chemical Society, 2014, 30: 8973

[14]

LuC., LipsonR. H.. Laser & Photonics Reviews, 2009, 4: 568

[15]

XuanM.-d., DaiL.-g., JiaH.-q., ChenH.. Optoelectronics Letters, 2014, 10: 51

[16]

LiuG., ZhangJ., ZhouC.. High Power Laser and Particle Beams, 2011, 23

[17]

ChenH., ZhangQ., ChouS. Y.. Nanotechnology, 2015, 26: 085302

[18]

ChenG.-c., FanG.-h.. Optoelectronics Letters, 2014, 10: 250

[19]

WangM.-T., LiaoK.-Y., Yun-LiL.. IEEE Photonics Technology Letters, 2011, 23: 962

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/