A large stroke magnetic fluid deformable mirror for focus control

Ling-kun Min, Zhi-zheng Wu, Ming-shuang Huang, Xiang-hui Kong

Optoelectronics Letters ›› , Vol. 12 ›› Issue (2) : 115-118.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (2) : 115-118. DOI: 10.1007/s11801-016-5245-9
Article

A large stroke magnetic fluid deformable mirror for focus control

Author information +
History +

Abstract

A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film (MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror (MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.

Cite this article

Download citation ▾
Ling-kun Min, Zhi-zheng Wu, Ming-shuang Huang, Xiang-hui Kong. A large stroke magnetic fluid deformable mirror for focus control. Optoelectronics Letters, , 12(2): 115‒118 https://doi.org/10.1007/s11801-016-5245-9

References

[1]
BiffanoT.. Nature Photonics, 2011, 5: 21
CrossRef Google scholar
[2]
PatersonA., BauerR., LiL., LubeigtW.. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 2701007
CrossRef Google scholar
[3]
ChristopherC., AdrianB., JohnR., PaulineP.. Journal of Biomedical Optics, 2015, 20: 016012
CrossRef Google scholar
[4]
JiaZ. H., DuanJ. P., WangW., MaoJ., WangM. H., ZhangB. Z.. J. Optoelectron. Laser, 2015, 26: 403
[5]
KrystianL. W., EmmaB., NoahS., MelS., DavidH., RobertR. J. M., DavidA., StevenB., TomB., PhilP.-B., KatherineK., DuncanP. H.. Review of Scientific Instruments, 2014, 85: 024502
CrossRef Google scholar
[6]
TysonR.K.. Principles of Adaptive Optics, 2012, Boca Raton, CRC Press
[7]
DuR. Q., ZhangX. J.. Opto-Electronic Engineering, 2011, 38: 30
[8]
GingrasJ., DeryJ.P., Yockell-LelievreH., BorraE., RitceyA. M.. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 279: 79
CrossRef Google scholar
[9]
KimW. Y., SongD.-S., JeonG.-J., KangI. K., ShimH. B., KimD.-K., LeeH.-C., ParkH., KangS.-W., BaeJ.-H.. Micro & Nano Letters, 2015, 10: 384
CrossRef Google scholar
[10]
BaranovE.A., KhmelS.Y., ZamchiyA.O.. Plasma Science, 2014, 42: 2794
CrossRef Google scholar
[11]
WenderH., MigowskiP., FeilA.F., TeixeiraS.R., DupontJ.. Coordination Chemistry Reviews, 2013, 257: 2468
CrossRef Google scholar
[12]
JiY. X., QinC. L., ZhengB., BaiX. D.. J. Optoelectron. Laser, 2013, 24: 2345
[13]
WuZ., IqbalA., Ben AmaraF.. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems, 2013, Berlin, Springer-verlag
CrossRef Google scholar

This work has been supported by Shanghai Municipal Natural Science Foundation (No.15ZR1415800), the Innovation Program of Shanghai Municipal Education Commission (No.14ZZ092), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars.

Accesses

Citations

Detail

Sections
Recommended

/