Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method

Mei-rong Sui , Cui-ping Han , Xiu-quan Gu , Yong Wang , Lu Tang , Hui Tang

Optoelectronics Letters ›› : 161 -165.

PDF
Optoelectronics Letters ›› : 161 -165. DOI: 10.1007/s11801-016-5242-z
Article

Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method

Author information +
History +
PDF

Abstract

TiO2 nanorod arrays (NRAs) were prepared on fluorine doped tin oxide (FTO) substrates by a facile two-step hydrothermal method. The nanorods were selectively grown on the FTO regions which were covered with TiO2 seeding layer. It took 5 h to obtain the compact arrays with the nanorod length of ~2 μm and diameter of ~50 nm. The photoelectrochemical (PEC) properties of TiO2 NRAs are also investigated. It is demonstrated that the TiO2 NRAs indicate the good photoelectric conversion ability with an efficiency of 0.22% at a full-wavelength irradiation. A photocurrent density of 0.21 mA/cm2 is observed at 0.7 V versus the saturated calomel electrode (SCE). More evidences suggest that the charge transferring resistance is lowered at an irradiation, while the flat-band potential (Vfb) is shifted towards the positive side.

Cite this article

Download citation ▾
Mei-rong Sui, Cui-ping Han, Xiu-quan Gu, Yong Wang, Lu Tang, Hui Tang. Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method. Optoelectronics Letters 161-165 DOI:10.1007/s11801-016-5242-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MomeniM. M., GhayeY.. Journal of Electroanalytical Chemistry, 2015, 751: 43

[2]

NiX. C., SangL. X., ZhangH. J., KiliyanamkandyA., AmorusoS., WangX., FittipaldiR., LiT., HuM. L., XuL. J.. Optoelectronics Letters, 2014, 10: 43

[3]

O’ReganB., GrätzelM.. Nature, 1991, 353: 737

[4]

JenningJ. R., GhicovA., PeterL. M., SchmukiP., WalkerA. B.. Journal of American Chemical Society, 2008, 130: 13364

[5]

XuB. L., LiuC. X., SunH. Y., ZhongY. R.. Optoelectronics Letters, 2014, 10: 84

[6]

BerheS. A., NagS., MolinetsZ., YoungbloodW. J.. ACS Applied Materials & Interfaces, 2013, 54: 573

[7]

QinD. D., BiY. P., FengX. J., WangW., BarberG. D., WangT., SongY. M., LuX. Q., MalloukT. E.. Chemistry of Materials, 2015, 27: 4180

[8]

LvM., ZhengD., YeM., XiaoJ., GuoW., LaiY., SunL., LinC., ZuoJ.. Energy & Environmental Science, 2013, 6: 1615

[9]

YellaA., HeinigerL. P., GaoP., NazeeruddinM. K., GrätzelM.. Nano Letters, 2014, 14: 2591

[10]

WolcottA., SmithW. A., KuykendallT. R., ZhaoY., ZhangJ. Z.. Small, 2009, 5: 104

[11]

GuX., ZhangS., QiangY., ZhaoY., ZhuL.. Journal of Electronic Materials, 2014, 43: 2709

[12]

LiZ., LuoW., ZhangM., FengJ., ZouZ.. Energy & Environmental Science, 2013, 6: 347

[13]

SuiM., HanC., GuX., WangY., TangL., TangH.. Optoelectronics Letters, 2015, 11: 405

[14]

JacobssonT. J., EdvinssonT.. Journal of Physical Chemistry C, 2012, 116: 15692

[15]

MaruskaH. P., GhoshA. K.. Solar Energy, 1978, 20: 443

[16]

BursteinE.. Phys. Rev. B, 1954, 93: 632

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/