Influence of Mn-doping concentration on the microstructure and magnetic properties of ZnO thin films

Zhao-feng Wu , Lei Guo , Kun Cheng , Feng Zhang , Rong-feng Guan

Optoelectronics Letters ›› : 52 -55.

PDF
Optoelectronics Letters ›› : 52 -55. DOI: 10.1007/s11801-016-5236-x
Article

Influence of Mn-doping concentration on the microstructure and magnetic properties of ZnO thin films

Author information +
History +
PDF

Abstract

The microstructure and magnetic properties of Mn-doped ZnO films with various Mn contents, synthesized by magnetron sputtering at room temperature, are investigated in detail. X-ray diffraction (XRD) measurement results suggest that the doped Mn ions occupy the Zn sites successfully and do not change the crystal structure of the ZnO films. However, the microstructure of the Mn-doped ZnO films apparently changes with increasing the Mn concentration. Arrays of well-aligned nanoscale rods are found in the Mn-doped ZnO films with moderate Mn concentrations. Magnetic measurement results indicate that the ZnO films doped with moderate Mn concentration are ferromagnetic at room temperature. The possible origin of the ferromagnetism in our samples is also explored in detail.

Keywords

Dilute Magnetic Semiconductor / Apply Physic Letter / Room Temperature Ferromagnetism / Yancheng Institute / Magnetic Polaron Model

Cite this article

Download citation ▾
Zhao-feng Wu, Lei Guo, Kun Cheng, Feng Zhang, Rong-feng Guan. Influence of Mn-doping concentration on the microstructure and magnetic properties of ZnO thin films. Optoelectronics Letters 52-55 DOI:10.1007/s11801-016-5236-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DietlT., OhnoH., MatsukuraF., CibertJ., FerrandD.. Science, 2000, 287: 1019

[2]

ManH. Y., GuoS. L., SuiY., GuoY., ChenB., WangH. D., DingC., NingF. L.. Scientific Reports, 2015, 5: 15507

[3]

CoeyJ. M. D., StamenovP., GunningR. D., VenkatesanM., PaulK.. New Journal of Physics, 2010, 12: 053025

[4]

PeartonS. J., HeoW. H., IvillM., NortonD. P., SteinerT.. Semiconductor Science and Technology, 2004, 19: R59

[5]

ChakrabartiM., DechoudhuryS., SanyalD., RoyT. K., BhowmickD., ChakrabartiA.. Journal of Physics D: Applied Physics, 2008, 41: 135006

[6]

LuZ. L., YanG. Q., WangS., ZouW. Q., MoZ. R., LvL. Y., ZhangF. M., DuY. W., XuM. X., XiaZ. H.. Journal of Applied Physics, 2008, 104: 033919

[7]

ElanchezhiyanJ., BhuvanaK. P., GopalakrishnanN., BalasubramanianY.. Materials Letters, 2008, 62: 3379

[8]

FukumuraT., JinZ., KawasakiM., ShonoT., HasegawaT., KoshiharaS., KoinumaH.. Applied Physics Letters, 2001, 78: 958

[9]

TiwariA., JinC., KvitA., KumarD., MuthJ. F., NrayanJ.. Solid State Communications, 2002, 121: 371

[10]

JungS. W., AnS. T., YiG., JungU., LeeS., ChoS.. Applied Physics Letters, 2002, 80: 4561

[11]

ZIX.-f., YEQ., LIUR.-m., HEY.-t.. Journal of Optoelectronics·Laser, 2015, 26: 883

[12]

ZHANGZ.-j., ZHANGL.-c., ZHAOF., QUC., HUANGR.-z., ZHANGM., LiQ.-s.. Journal of Optoelectronics·Laser, 2014, 25: 851

[13]

YangL. W., WuX. L., HuangG. S., QiuT., YangY. M.. Journal of Applied Physics, 2005, 97: 014308

[14]

LiJ. H., ShenD. Z., ZhangJ. Y., ZhaoD. X., LiB. S., LuY. M., LiuY. C., FanX. W.. Journal of Magnetism and Magnetic Materials, 2006, 302: 118

[15]

ChengX. M., ChienC. L.. Journal of Applied Physics, 2003, 93: 7876

[16]

GuZ. B., LiuM. H., WangJ., WuD., ZhangS. T., MengX. K., ZhuY. Y., ZhuS. N., ChenY. F., PanX. Q.. Applied Physics Letters, 2006, 88: 082111

[17]

ZouC. W., WangH. J., YiM. L., LiM., LiuC. S., GuoL. P., FuD. J., KangT. W.. Applied Surface Science, 2010, 256: 2453

[18]

WuZ. F., WuX. M., ZhugeL. J., ChenX. M., WangX. F.. Applied Physics Letters, 2008, 93: 023103

[19]

KittilstvedK. R., LiuW. K., GamelinD. R.. Nature Materials, 2006, 5: 291

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/