PDF
Abstract
Indium oxide (In2O3) films were prepared on Al2O3 (0001) substrates at 700 °C by metal-organic chemical vapor deposition (MOCVD). Then the samples were annealed at 800 °C, 900 °C and 1 000 °C, respectively. The X-ray diffraction (XRD) analysis reveals that the samples were polycrystalline films before and after annealing treatment. Triangle or quadrangle grains can be observed, and the corner angle of the grains becomes smooth after annealing. The highest Hall mobility is obtained for the sample annealed at 900 °C with the value about 24.74 cm2·V-1·s-1. The average transmittance for the films in the visible range is over 90%. The optical band gaps of the samples are about 3.73 eV, 3.71 eV, 3.70 eV and 3.69 eV corresponding to the In2O3 films deposited at 700 °C and annealed at 800 °C, 900 °C and 1 000 °C, respectively.
Keywords
Ultrasonic Irradiation
/
Hall Mobility
/
Average Transmittance
/
Indium Oxide
/
Corner Angle
Cite this article
Download citation ▾
Hong-duo Zhao, Wei Mi, Kai-liang Zhang, Jin-shi Zhao.
Influence of annealing on the structural, optical and electrical properties of indium oxide films deposited on c-sapphire substrate.
Optoelectronics Letters 39-42 DOI:10.1007/s11801-016-5235-y
| [1] |
KongL. Y., MaJ., YangF., ZhuZ., LuanC. L., XiaoH. D.. Applied Surface Science, 2010, 257: 518
|
| [2] |
PramodnN. G., PandeyS. N.. Ceramics International, 2014, 40: 3461
|
| [3] |
OhtaH., OritaM., HiranoM., HosonoH.. Journal of Applied Physics, 2002, 91: 3547
|
| [4] |
KingP. D. C., VealT. D., FuchsF., WangC.h. Y., PayneD. J., BourlangeA., ZhangH., BellG. R., CimallaV., AmbacherO., EgdellR. G., BechstedtF., McConvilleC. F.. Physical Review B, 2009, 79: 205211
|
| [5] |
ParthibanS., GokulakrishnanV., RamamurthiK., ElangovanE., MartinsR., FortunatoE., GanesanR.. Solar Energy Materials and Solar Cells, 2009, 93: 92
|
| [6] |
BejiN., SouliM., AjiliM., AzzazaS., AllegS., TurkiN. K.. Superlattices and Microstructures, 2015, 81: 114
|
| [7] |
BaqiahaH., IbrahimaN. B., AbdiM. H., HalimS. A.. Journal of Alloys and Compdounds, 2013, 575: 198
|
| [8] |
KarthikeyanS., HillA. E., PilkingtonR. D.. Thin Solid Films, 2014, 550: 140
|
| [9] |
KooB. R., AhnH. J.. Ceramics International, 2016, 42: 509
|
| [10] |
OkazakiS., HiroseY., NakaoS., YangaC., HarayamadI., SekibadD., HasegawaT.. Thin Solid Film, 2014, 559: 96
|
| [11] |
KongL. Y., MaJ., LuanC. L., ZhuZ., YuQ. Q.. Surface Science, 2011, 605: 977
|
| [12] |
YangF., MaJ., FengX., KongL.. Journal of Crystal Growth, 2008, 310: 4054
|
| [13] |
LiZ., ZhaoC., MiW., LuanC., FengX., MaJ.. Ceramics International, 2014, 40: 4203
|
| [14] |
BeenaD., LethyK. J., VinodkumarR., Mahadevan PillaiV. P., GanesanV., PhaseD. M., SudheerS. K.. Applied Surface Science, 2009, 255: 8334
|
| [15] |
SenthilkumarV., VickramanP., JayachandranM., SanjeevirajC.. Vacuum, 2010, 84: 864
|
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.