Study on the fluorescence quenching of ZnO by graphene oxide

Ji-tao Li , Jing Yang , Si-hua Zhou , Shao-hui Wang , Kui-li Liu , Chun-xiang Xu

Optoelectronics Letters ›› : 35 -38.

PDF
Optoelectronics Letters ›› : 35 -38. DOI: 10.1007/s11801-016-5217-0
Article

Study on the fluorescence quenching of ZnO by graphene oxide

Author information +
History +
PDF

Abstract

Zinc oxide (ZnO) microrod arrays were synthesized on Si substrate by a vapor phase transport (VPT) method in a tube furnace. The obtained ZnO microrods are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photoluminescence (PL) measurement indicates that the ZnO microrods have a strong ultraviolet (UV) emission centered at ~391 nm and a defect-related emission centered at ~530 nm. After the microrods were coated with graphene oxide (GO), the PL intensity of the hybrid microstructure is quenched compared with that of the bare one at the same excitation condition, and the PL intensity changes with the concentration of the GO. The fluorescence quenching mechanism is also discussed in this work.

Keywords

Graphene Oxide / Near Band Edge / Near Band Edge Emission / Vapor Phase Transport / Enlarge Scanning Electron Microscope Image

Cite this article

Download citation ▾
Ji-tao Li, Jing Yang, Si-hua Zhou, Shao-hui Wang, Kui-li Liu, Chun-xiang Xu. Study on the fluorescence quenching of ZnO by graphene oxide. Optoelectronics Letters 35-38 DOI:10.1007/s11801-016-5217-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TianW., ZhangC., ZhaiT., LiS. L., WangX., LiuJ., JieX., LiuD., LiaoM., KoideY., GolbergD., BandoY.. Advanced Materials, 2014, 26: 3088

[2]

LiuJ. W., LuR. T., XuG. W., WuJ., ThapaP., MooreD.. Advanced Functional Materials, 2013, 23: 4941

[3]

HuL. W., HuC. H., TianH., ZhangY. X., JingA. H.. Optoelectronics Letters, 2014, 10: 81

[4]

YangA. L., BaoX. C., LiS. P., YangR. Q., WangT., WangY. J., SunL.. Optoelectronics Letters, 2014, 10: 216

[5]

WeiB., ZhengK., JiY., ZhangY. F., ZhangZ., HanX. D.. Nano Letters, 2012, 12: 4595

[6]

ZhangS. G., ZhangX. W., SiF. T., DongJ. J., WangJ. X., LiuX., YinZ. G., GaoH. L.. Applied Physics Letters, 2012, 101: 121104

[7]

QiaoQ., ShanC. X., ZhengJ., ZhuH., YuS. F., LiB. H., JiaY., ShenD. Z.. Nanoscale, 2013, 5: 513

[8]

ParkH., ChangS., JeanJ., ChengJ. J., AraujoP. T., WangM., BawendiM. G., DresselhausM. S., BulovicV., KongJ., GradecakS.. Nano Letters, 2013, 13: 233

[9]

HuangJ. Z., LiuS. Y., YaoN. N., XuX. J.. Optoelectronics Letters, 2014, 10: 161

[10]

NovoselovK. S., GeimA. K., MorozovS. V., JiangD., ZhangY., DubonosS. V., GrigorievaI. V., FirsovA. A.. Science, 2004, 306: 666

[11]

NairR. R., BlakeP., GrigorenkoA. N., NovoselovK. S., BoothT. J., StauberT., PeresN. M., GeimA. K.. Science, 2008, 320: 1308

[12]

WangZ., ZhanX., WangY., MuhammadS., HuangY., HeJ.. Nanoscale, 2012, 4: 2678

[13]

LiB. J., CaoH. Q.. Journal of Materials Chemistry, 2011, 21: 3346

[14]

ChangH., SunZ., HoK. Y., TaoX., YanF., KwokW. M., ZhengZ.. Nanoscale, 2011, 3: 258

[15]

HummersW. S., OffemanR. E.. Journal of the American Chemical Society, 1958, 80: 1339

[16]

XuX. Y., XuC. X., LinY., LiJ. T., HuJ. G.. Journal of Physical Chemistry C, 2013, 117: 24549

[17]

VietmeyerF., SegerB., KamatP. V.. Advanced Materials, 2007, 19: 2935

[18]

QianD. F., LiY. G., ZhangQ. H., ShiG. Y., WangH. Z.. Journal of Alloys and Compounds, 2011, 509: 10121

[19]

LvT., PanL. K., LiuX. J., LuT., ZhuG., SunZ.. Journal of Alloys and Compounds, 2011, 509: 10086

[20]

ShenX. P., WuJ. L., BaiS., ZhouH.. Journal of Alloys and Compounds, 2010, 506: 136

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/