Room-temperature light emission from an airbridge double-heterostructure microcavity of Er-doped Si photonic crystal

Yue Wang , Jun-ming An , Yuan-da Wu , Xiong-wei Hu

Optoelectronics Letters ›› : 47 -51.

PDF
Optoelectronics Letters ›› : 47 -51. DOI: 10.1007/s11801-016-5211-6
Article

Room-temperature light emission from an airbridge double-heterostructure microcavity of Er-doped Si photonic crystal

Author information +
History +
PDF

Abstract

We experimentally demonstrate an efficient enhancement of luminescence from two-dimensional (2D) hexagonal photonic crystal (PC) airbridge double-heterostructure microcavity with Er-doped silicon (Si) as light emitters on siliconon-insulator (SOI) wafer at room temperature. A single sharp resonant peak at 1 529.6 nm dominates the photoluminescence (PL) spectrum with the pumping power of 12.5 mW. The obvious red shift and the degraded quality factor (Q-factor) of resonant peak appear with the pumping power increasing, and the maximum measured Q-factor of 4 905 is achieved at the pumping power of 1.5 mW. The resonant peak is observed to shift depending on the structural parameters of PC, which indicates a possible method to control the wavelength of enhanced luminescence for Si-based light emitters based on PC microcavity.

Keywords

Photonic Crystal / Resonant Peak / Resonant Wavelength / Photonic Crystal Structure / Pump Power Increase

Cite this article

Download citation ▾
Yue Wang, Jun-ming An, Yuan-da Wu, Xiong-wei Hu. Room-temperature light emission from an airbridge double-heterostructure microcavity of Er-doped Si photonic crystal. Optoelectronics Letters 47-51 DOI:10.1007/s11801-016-5211-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CullisA. G., CanhamL. T.. Nature, 1991, 353: 335

[2]

PavesiL., NegroL. D., MazzoleniC., FranzoG., PrioloF.. Nature, 2000, 408: 440

[3]

HuW. X., ChengB. W., XueC. L., XueH. Y., SuS. J., BaiA. Q., LuoL. P., YuY. D., WangQ. M.. Applied Physics Letters, 2009, 95: 092102

[4]

SunX. C., LiuJ. F., KimerlingL. C., MichelJ.. Optics Letters, 2009, 34: 1198

[5]

YerciS., LiR., KucheyevS. O., BuurenT. T. V., BasuS. N., NegroL. D.. IEEE Journal of Selected Topics Quantum Electronics, 2010, 16: 114

[6]

LiR., YerciS., KucheyevS. O., BuurenT. V., NegroL. D.. Optics Express, 2011, 19: 5379

[7]

ZhengJ., DingW. C., XueC. L., ZuoY. H., ChengB. W., YuJ. Z., WangQ. M., WangG. L., GuoH. Q.. Journal of Luminescence, 2010, 130: 411

[8]

GAOH.-s., WANGZ.-z., XIEY.-y., GENGZ.-x., KANQ., WANGC.-x., YUANJ., CHENH.-d.. Journal of Optoelectronics Laser, 2014, 25: 1338

[9]

WUL., XIES., MAOL.-h., GUOW.-l., ZHANGS.-l., CUIM., XIER.. Journal of Optoelectronics·Laser, 2015, 26: 1048

[10]

GerardJ. M., GayralB.. Journal of Lightwave Technology, 1999, 17: 2089

[11]

TerawakiR., TakahashiY., ChiharaM., InuiY., NodaS.. Optics Express, 2012, 20: 22743

[12]

SekoguchiH., TakahashiY., AsanoT., NodaS.. Optics Express, 2014, 22: 916

[13]

HuZ., LuY. Y.. Journal of Lightwave Technology, 2015, 33: 2012

[14]

ShakoorA., LoSavioR., PortalupiS. L., GeraceD., AndreaniL. C., GalliM., KraussT. F., O’FaolainL.. Physica B: Condensed Matter, 2012, 207: 4027

[15]

MakarovaM., SihV., WargaJ., LiR., NegroL. D., VuckovicJ.. Applied Physics Letters, 2008, 92: 161107

[16]

ZhangJ. S., WangY., WuY. D., ZhangX. G., JiangT., AnJ. M., LiJ. J., WangH. J., HuX. W.. Journal of Semiconductor, 2011, 32: 094004

[17]

XuX. J., NarusawaS., ChibaT., TsuboiT., XiaJ. S., UsamiN., MaruizumiT., ShirakiY.. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18: 1830

[18]

ZhangY., ZengC., LiD. P., HuangZ. Z., LiK. Z., YuJ. Z., LiJ. T., XuX. J., MatruizumiT., XiaJ. S.. IEEE Photonics Journal, 2013, 5: 4500607

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/