PDF
Abstract
We experimentally demonstrate an efficient enhancement of luminescence from two-dimensional (2D) hexagonal photonic crystal (PC) airbridge double-heterostructure microcavity with Er-doped silicon (Si) as light emitters on siliconon-insulator (SOI) wafer at room temperature. A single sharp resonant peak at 1 529.6 nm dominates the photoluminescence (PL) spectrum with the pumping power of 12.5 mW. The obvious red shift and the degraded quality factor (Q-factor) of resonant peak appear with the pumping power increasing, and the maximum measured Q-factor of 4 905 is achieved at the pumping power of 1.5 mW. The resonant peak is observed to shift depending on the structural parameters of PC, which indicates a possible method to control the wavelength of enhanced luminescence for Si-based light emitters based on PC microcavity.
Keywords
Photonic Crystal
/
Resonant Peak
/
Resonant Wavelength
/
Photonic Crystal Structure
/
Pump Power Increase
Cite this article
Download citation ▾
Yue Wang, Jun-ming An, Yuan-da Wu, Xiong-wei Hu.
Room-temperature light emission from an airbridge double-heterostructure microcavity of Er-doped Si photonic crystal.
Optoelectronics Letters 47-51 DOI:10.1007/s11801-016-5211-6
| [1] |
CullisA. G., CanhamL. T.. Nature, 1991, 353: 335
|
| [2] |
PavesiL., NegroL. D., MazzoleniC., FranzoG., PrioloF.. Nature, 2000, 408: 440
|
| [3] |
HuW. X., ChengB. W., XueC. L., XueH. Y., SuS. J., BaiA. Q., LuoL. P., YuY. D., WangQ. M.. Applied Physics Letters, 2009, 95: 092102
|
| [4] |
SunX. C., LiuJ. F., KimerlingL. C., MichelJ.. Optics Letters, 2009, 34: 1198
|
| [5] |
YerciS., LiR., KucheyevS. O., BuurenT. T. V., BasuS. N., NegroL. D.. IEEE Journal of Selected Topics Quantum Electronics, 2010, 16: 114
|
| [6] |
LiR., YerciS., KucheyevS. O., BuurenT. V., NegroL. D.. Optics Express, 2011, 19: 5379
|
| [7] |
ZhengJ., DingW. C., XueC. L., ZuoY. H., ChengB. W., YuJ. Z., WangQ. M., WangG. L., GuoH. Q.. Journal of Luminescence, 2010, 130: 411
|
| [8] |
GAOH.-s., WANGZ.-z., XIEY.-y., GENGZ.-x., KANQ., WANGC.-x., YUANJ., CHENH.-d.. Journal of Optoelectronics Laser, 2014, 25: 1338
|
| [9] |
WUL., XIES., MAOL.-h., GUOW.-l., ZHANGS.-l., CUIM., XIER.. Journal of Optoelectronics·Laser, 2015, 26: 1048
|
| [10] |
GerardJ. M., GayralB.. Journal of Lightwave Technology, 1999, 17: 2089
|
| [11] |
TerawakiR., TakahashiY., ChiharaM., InuiY., NodaS.. Optics Express, 2012, 20: 22743
|
| [12] |
SekoguchiH., TakahashiY., AsanoT., NodaS.. Optics Express, 2014, 22: 916
|
| [13] |
HuZ., LuY. Y.. Journal of Lightwave Technology, 2015, 33: 2012
|
| [14] |
ShakoorA., LoSavioR., PortalupiS. L., GeraceD., AndreaniL. C., GalliM., KraussT. F., O’FaolainL.. Physica B: Condensed Matter, 2012, 207: 4027
|
| [15] |
MakarovaM., SihV., WargaJ., LiR., NegroL. D., VuckovicJ.. Applied Physics Letters, 2008, 92: 161107
|
| [16] |
ZhangJ. S., WangY., WuY. D., ZhangX. G., JiangT., AnJ. M., LiJ. J., WangH. J., HuX. W.. Journal of Semiconductor, 2011, 32: 094004
|
| [17] |
XuX. J., NarusawaS., ChibaT., TsuboiT., XiaJ. S., UsamiN., MaruizumiT., ShirakiY.. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18: 1830
|
| [18] |
ZhangY., ZengC., LiD. P., HuangZ. Z., LiK. Z., YuJ. Z., LiJ. T., XuX. J., MatruizumiT., XiaJ. S.. IEEE Photonics Journal, 2013, 5: 4500607
|
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.