Enhanced photoluminescence from porous silicon microcavities by rare earth doping

Di-fei Sun, Zhen-hong Jia, Jun Zhou

Optoelectronics Letters ›› , Vol. 12 ›› Issue (1) : 5-7.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (1) : 5-7. DOI: 10.1007/s11801-016-5210-7
Article

Enhanced photoluminescence from porous silicon microcavities by rare earth doping

Author information +
History +

Abstract

The photoluminescence (PL) properties of porous silicon microcavities (PSMs) in the visible range at room temperature are improved by doping the rare earth ytterbium (Yb) into PSMs prepared by the electrochemical etching method. It is observed that PSMs doped with the rare earth have an emission band around 630 nm. Compared with the single-layer porous silicon (PS) film, the PSMs doped with Yb have narrower and stronger PL spectrum.

Keywords

Rare Earth / Porous Silicon / Distribute Bragg Reflector / Physica Status Solidus / Refractive Index Layer

Cite this article

Download citation ▾
Di-fei Sun, Zhen-hong Jia, Jun Zhou. Enhanced photoluminescence from porous silicon microcavities by rare earth doping. Optoelectronics Letters, , 12(1): 5‒7 https://doi.org/10.1007/s11801-016-5210-7

References

[1]
HirschmanK. D., TsybeskovL., DuttaguptaS. P., FauchetP. M.. Nature, 1996, 384: 341
CrossRef Google scholar
[2]
KrismastutiF. S. H., PaceS., VoelckerN. H.. Advanced Functional Materials, 2014, 24: 3639
CrossRef Google scholar
[3]
DeLouiseL. A., OuyangH.. Physica Status Solidi (c), 2009, 6: 1729
CrossRef Google scholar
[4]
QiaoH., GuanB., BöckingT., GalM., GoodingJ. J., ReeceP. J.. Applied Physics Letters, 2010, 96: 1106
CrossRef Google scholar
[5]
GabrielaP., VivechanaA., RogerA., ElíasP., CsillaG.. Langmuir: the ACS Journal of Surfaces & Colloids, 2008, 24: 13765
CrossRef Google scholar
[6]
SetzuS., FerrandP., RomestainR.. Materials Science and Engineering: B, 2000, 69–70: 34
CrossRef Google scholar
[7]
PalestinoG., MartinM., AgarwalV., LegrosR., CloitreT., ZimányiL., GergelyC.. Physica Status Solidi (c), 2009, 6: 1624
CrossRef Google scholar
[8]
QiuX. J., TanX. W., WangZ., LiuG. Y., XiongZ. H.. Journal of Applied Physics, 2006, 100: 074503
CrossRef Google scholar
[9]
ReeceP. J., LerondelG., MuldersJ., ZhengW. H., GalM.. Physica Status Solidi (a), 2003, 197: 321
CrossRef Google scholar
[10]
FilippovV. V., PershukevichP. P., KuznetsovaV. V., HomenkoV. S.. Journal of Luminescence, 2002, 99: 185
CrossRef Google scholar
[11]
JenieS. N., PaceS., SciaccaB., BrooksR. D., PlushS. E., VoelckerN. H.. ACS Applied Materials & Interfaces, 2014, 6: 12012
CrossRef Google scholar
[12]
ZhongF.-r., X.-y., JiaZ.-h., TianM.. Optoelectronics Letters, 2013, 9: 105
CrossRef Google scholar
[13]
MAH., ZHANGH.-y.. Optoelectronics Letters, 2015, 11: 95
CrossRef Google scholar
[14]
LuoL., ZhangX. X., LiK. F., CheahK. W., ShiJ. X., WongW. K., GongM. L.. Advanced Materials, 2004, 16: 1664
CrossRef Google scholar
[15]
MulaG., LoddoL., PinnaE., MariaV. T., MicheleM., SimonaP., RobertaR., AF.. Chemical Engineering Transactions, 2014, 41: 403

This work has been supported by the National Natural Science Foundation of China (Nos.61575168 and 61265009), and the Xinjiang Science and Technology Project (No.201412112).

Accesses

Citations

Detail

Sections
Recommended

/