A kind of graphene film metamaterial for terahertz absorbers

Run-mei Gao , Zong-cheng Xu , Chun-feng Ding , Jian-quan Yao

Optoelectronics Letters ›› : 43 -46.

PDF
Optoelectronics Letters ›› :43 -46. DOI: 10.1007/s11801-016-5193-4
Article

A kind of graphene film metamaterial for terahertz absorbers

Author information +
History +
PDF

Abstract

A kind of functional graphene thin film metamaterial on a metal-plane separated by a thick dielectric layer is designed for terahertz (THz) absorbers. We investigate the properties of the graphene metamaterial with different interlayers in the 0–3 THz range. The simulation results show that the absorption rate reaches up to 99.9% at the frequency of 1.917 THz. Changing the period to 80 μm×18 μm can get a narrow-band high quality factor (Q) absorber. We present a novel theoretical interpretation based on the standing wave field theory, which shows that the coherent superposition of incident and reflection rays produces standing waves, and the field energy is localized inside the thick spacers and dissipates through the metal-planes.

Keywords

Standing Wave / Space Layer / Metamaterial Absorber / Dielectric Spacer / Perfect Absorber

Cite this article

Download citation ▾
Run-mei Gao, Zong-cheng Xu, Chun-feng Ding, Jian-quan Yao. A kind of graphene film metamaterial for terahertz absorbers. Optoelectronics Letters 43-46 DOI:10.1007/s11801-016-5193-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HeM. D., ZhangG., LiuJ. Q., LiJ. B., WangX. J., HuangZ. R., WangL. L., ChenX. S.. Optics Express, 2014, 22: 6680

[2]

WattsC. M., LiuX., PadillaW. J.. Advanced Materials, 2012, 24: OP181

[3]

JuL., GengB., HorngJ., GiritC., MartinM., HaoZ., BechtelH. A., LiangX., ZettlA., ShenY. R., WangF.. Nature Nanotechnology, 2011, 6: 630

[4]

Sensale-RodriguezB., YanR., KellyM. M., FangT., TahyK., HwangW. S., JenaD., LiuL., XingH. G.. Nature Communications, 2012, 3: 780

[5]

LandyN. I., SajuyigbeS., MockJ. J., SmithD. R., PadillaW. J.. Physical Review Letters, 2008, 100: 207402

[6]

HuangL., ChowdhuryD. R., RamaniS., ReitenM. T., LuoS. N., AzadA. K., ChenH. T.. Applied Physics Letters, 2012, 101: 101102

[7]

LinY. S., HuangC. Y., LeeC.. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 1

[8]

YooY. J., KimY. J., HwangJ. S., RheeJ. Y., KimK. W., KimY. H., CheongH., ChenL. Y., LeeY. P.. Applied Physics Letters, 2015, 106: 071105

[9]

IsicG., GajicR.. Journal of Applied Physics, 2014, 116: 233103

[10]

WuK. M., HuangY. J., WanghuangT. L., ChenW. J., WenG. J.. Applied Optics, 2015, 54: 299

[11]

PeraltaX. G., SmirnovaE. I., AzadA. K., ChenH. T., TaylorA. J., BrenerI., O’HaraJ. F.. Optics Express, 2009, 17: 773

[12]

LiL., WangJ., DuH., WangJ., QuS., XuZ.. AIP Advances, 2015, 5: 017147

[13]

HongJ. T., LeeK. M., SonB. H., ParkS. J., ParkD. J., ParkJ.-Y., LeeS., AhnY. H.. Optics Express, 2013, 21: 7633

[14]

ZhengZ. W., ZhaoC. J., LuS. B., ChenY., LiY., ZhangH., WenS. C.. Optics Express, 2012, 20: 23201

[15]

TredicucciA., VitielloM. S.. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 11: 130

PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

/