A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems

Jian-guo Yuan , Meng-qi Liang , Yong Wang , Jin-zhao Lin , Yu Pang

Optoelectronics Letters ›› : 132 -135.

PDF
Optoelectronics Letters ›› : 132 -135. DOI: 10.1007/s11801-016-5167-6
Article

A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems

Author information +
History +
PDF

Abstract

A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain (NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate (BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.

Cite this article

Download citation ▾
Jian-guo Yuan, Meng-qi Liang, Yong Wang, Jin-zhao Lin, Yu Pang. A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems. Optoelectronics Letters 132-135 DOI:10.1007/s11801-016-5167-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangP., YuS., LiuC., JiangL.. Electronics Letters, 2014, 50: 320

[2]

ParkH., HongS., NoJ.-S., ShinD.-J.. IEEE Transactions on Communications, 2013, 61: 3108

[3]

LiJ., LiuK.-k., LinS., Abdel-GhaffarK.. IEEE Transactions on Communications, 2014, 62: 2626

[4]

ZhuL.-x., YangH.-y.. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2011, 23: 570

[5]

YuanJ., LiuF., YeW., HuangS., WangY.. Optik, 2014, 125: 1016

[6]

DjordjevicI. B.. Journal of Lightwave Technology, 2013, 31: 2669

[7]

YuanJ.-g., XuL., TongQ.-z.. Optoelectronics Letters, 2013, 9: 378

[8]

YuanJ.-g., LiuW.-l., HuangS., WangY.. Journal of Optoelectronics·Laser, 2013, 24: 75

[9]

YuanJ.-g., LiC.-y., HuangS., WangY.. Journal of Optoelectronics·Laser, 2013, 24: 1698

[10]

DjordjevicI. B., ArabaciM., MinkovL. L.. Journal of Lightwave Technology, 2009, 27: 3518

[11]

RichardsonT. J., UrbankeR. L.. IEEE Transactions on Information Theory, 2001, 47: 638

[12]

MacKayD. J. C., WilsonS. T., DaveyM. C.. IEEE Transactions on Communications, 1999, 47: 1449

[13]

EleftheriouE., OlcerS.. Low-Density Parity-Check Codes for Multilevel Modulation, 2002, Switzerland, Ruschlikon, 442

[14]

ITU-T G.975, Forward Error Correction for Submarine Systems, 2000.

[15]

ITU-T G.975.1, Forward Error Correction for High Bit Rate DWDM Submarine Systems, 2004.

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/