A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems

Jian-guo Yuan, Meng-qi Liang, Yong Wang, Jin-zhao Lin, Yu Pang

Optoelectronics Letters ›› , Vol. 12 ›› Issue (2) : 132-135.

Optoelectronics Letters ›› , Vol. 12 ›› Issue (2) : 132-135. DOI: 10.1007/s11801-016-5167-6
Article

A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems

Author information +
History +

Abstract

A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain (NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate (BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.

Cite this article

Download citation ▾
Jian-guo Yuan, Meng-qi Liang, Yong Wang, Jin-zhao Lin, Yu Pang. A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems. Optoelectronics Letters, , 12(2): 132‒135 https://doi.org/10.1007/s11801-016-5167-6

References

[1]
ZhangP., YuS., LiuC., JiangL.. Electronics Letters, 2014, 50: 320
CrossRef Google scholar
[2]
ParkH., HongS., NoJ.-S., ShinD.-J.. IEEE Transactions on Communications, 2013, 61: 3108
CrossRef Google scholar
[3]
LiJ., LiuK.-k., LinS., Abdel-GhaffarK.. IEEE Transactions on Communications, 2014, 62: 2626
CrossRef Google scholar
[4]
ZhuL.-x., YangH.-y.. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2011, 23: 570
[5]
YuanJ., LiuF., YeW., HuangS., WangY.. Optik, 2014, 125: 1016
CrossRef Google scholar
[6]
DjordjevicI. B.. Journal of Lightwave Technology, 2013, 31: 2669
CrossRef Google scholar
[7]
YuanJ.-g., XuL., TongQ.-z.. Optoelectronics Letters, 2013, 9: 378
CrossRef Google scholar
[8]
YuanJ.-g., LiuW.-l., HuangS., WangY.. Journal of Optoelectronics·Laser, 2013, 24: 75
[9]
YuanJ.-g., LiC.-y., HuangS., WangY.. Journal of Optoelectronics·Laser, 2013, 24: 1698
[10]
DjordjevicI. B., ArabaciM., MinkovL. L.. Journal of Lightwave Technology, 2009, 27: 3518
CrossRef Google scholar
[11]
RichardsonT. J., UrbankeR. L.. IEEE Transactions on Information Theory, 2001, 47: 638
CrossRef Google scholar
[12]
MacKayD. J. C., WilsonS. T., DaveyM. C.. IEEE Transactions on Communications, 1999, 47: 1449
CrossRef Google scholar
[13]
EleftheriouE., OlcerS.. Low-Density Parity-Check Codes for Multilevel Modulation, 2002, Switzerland, Ruschlikon, 442
[14]
ITU-T G.975, Forward Error Correction for Submarine Systems, 2000.
[15]
ITU-T G.975.1, Forward Error Correction for High Bit Rate DWDM Submarine Systems, 2004.

This work has been supported by the National Natural Science Foundation of China (Nos.61472464 and 61471075), the Program for Innovation Team Building at Institutions of Higher Education in Chongqing (No.J2013-46), the Natural Science Foundation of Chongqing Science and Technology Commission (Nos.cstc2015jcyjA0554 and cstc2013jcyjA40017), and the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications (Chongqing Municipal Education Commission) (No.CYS14144).

Accesses

Citations

Detail

Sections
Recommended

/