Refractive index sensors based on the fused tapered special multi-mode fiber

Xing-hu Fu , Yan-li Xiu , Qin Liu , Hai-yang Xie , Chuan-qing Yang , Shun-yang Zhang , Guang-wei Fu , Wei-hong Bi

Optoelectronics Letters ›› : 12 -15.

PDF
Optoelectronics Letters ›› : 12 -15. DOI: 10.1007/s11801-016-5160-0
Article

Refractive index sensors based on the fused tapered special multi-mode fiber

Author information +
History +
PDF

Abstract

In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

Keywords

Refractive Index / Photonic Crystal Fiber / Wavelength Shift / Amplify Spontaneous Emission / Wide Application Range

Cite this article

Download citation ▾
Xing-hu Fu, Yan-li Xiu, Qin Liu, Hai-yang Xie, Chuan-qing Yang, Shun-yang Zhang, Guang-wei Fu, Wei-hong Bi. Refractive index sensors based on the fused tapered special multi-mode fiber. Optoelectronics Letters 12-15 DOI:10.1007/s11801-016-5160-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WenX., NingT., YouH., LiJ., FengT., PeiL., JianW.. Optoelectronics Letters, 2013, 9: 325

[2]

MengH., ShenW., ZhangG., WuX., WangW., TanC., HuangX.. Sensors and Actuators B: Chemical, 2011, 160: 720

[3]

ZhangX., PengW., LiuY., PanL.. Optics Communications, 2013, 294: 188

[4]

ChengH., JingZ., PengW., HaoH., LiH., ZhangX.. Journal of Optoelectronics·Laser, 2012, 26: 649

[5]

ZhaoY., PangF., DongY., WenJ., ChenZ., WangT.. Optics Express, 2013, 21: 26136

[6]

GanH., ChenZ., ZhangJ., GanH., TangJ., LuoY., YuJ., LuH., GuanH.. Journal of Optoelectronics·Laser, 2015, 26: 633

[7]

CaoY., LiuH., TongZ., YuanS., ZhaoS.. Optoelectronics Letters, 2015, 11: 69

[8]

ShiS., ZhouX., ZhangZ., LiuY.. Journal of Optoelectronics·Laser, 2012, 23: 1644

[9]

ZhuS., PangF., HuangS., ZouF., DongY., WangT.. Optics Express, 2015, 23: 13880

[10]

TatarP., KacikD.. Optical Fiber Technology, 2013, 19: 330

[11]

XuL., JiangL., WangS., LiB., LuY.. Applied Optics, 2013, 52: 2038

[12]

IbrahimS. A., RahmanN. A., Abu BakarM. H., GireiS. H., YaacobM. H., AhmadH., MahdiM. A.. Optics Express, 2015, 23: 2837

[13]

FuG., GuoP., FuX., BiW., GaoF.. Journal of Optoelectronics·Laser, 2014, 25: 1657

[14]

JiY., FuG., FuX., ShenY., BiW.. Acta Optica Sinica, 2013, 33: 1006005

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/