Spatial modulation characteristics of single-photon frequency up-conversion systems pumped by Gaussian laser beam

Jian-hui Ma, Xiong-jie Li, Wen-jie Wu, Kun Huang, Hai-feng Pan, E. Wu

Optoelectronics Letters ›› , Vol. 11 ›› Issue (6) : 477-480.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (6) : 477-480. DOI: 10.1007/s11801-015-5178-8
Article

Spatial modulation characteristics of single-photon frequency up-conversion systems pumped by Gaussian laser beam

Author information +
History +

Abstract

In a Gaussian laser beam pumped single-photon frequency up-conversion system, the spatial distribution of the conversion efficiency is calculated, which strongly depends on the intensity distribution of the pump beam and leads to a spatial modulation of the output single photons. As a result, by simply varying the Gaussian pump beam intensity and the beam size, the converted photons could be modulated spatially and exhibit a programmable distribution. This will be meaningful for the researches on quantum communication and quantum manipulation based on frequency up-conversion system.

Cite this article

Download citation ▾
Jian-hui Ma, Xiong-jie Li, Wen-jie Wu, Kun Huang, Hai-feng Pan, E. Wu. Spatial modulation characteristics of single-photon frequency up-conversion systems pumped by Gaussian laser beam. Optoelectronics Letters, , 11(6): 477‒480 https://doi.org/10.1007/s11801-015-5178-8

References

[1]
MaL. J., SlatteryO., TangX.. Opt. Express, 2009, 17: 14395
CrossRef Google scholar
[2]
SlatteryO., MaL. J., KuoP., KimY. S.. Laser Phys. Lett., 2013, 10: 075201
CrossRef Google scholar
[3]
NeelyT. W., Nugent-GlandorfL., AdlerF., DiddamsS. A.. Opt. Express, 2012, 37: 4332
[4]
RakherM. T., MaL. J., SlatteryO., TangX., SrinivasanK.. Nature Photonics, 2010, 4: 786
CrossRef Google scholar
[5]
TangR. K., LiX. J., WuW. J., PanH. F., ZengH. P., WuE.. Opt. Express, 2015, 23: 9796
CrossRef Google scholar
[6]
VollmerC. E., BauneC., SamblowskiA., EberleT., HändchenV., FiurášekJ., SchnabelR.. Phys. Rev. Lett., 2014, 112: 073602
CrossRef Google scholar
[7]
HonjoT., TakesueH., KamadaH., NishidaY., TadanagaO., AsobeM., InoueK.. Opt. Express, 2014, 15: 13957
CrossRef Google scholar
[8]
HuangK., GuX. R., PanH. F., WuE., ZengH. P.. Appl. Phys. Lett., 2012, 100: 151102
CrossRef Google scholar
[9]
ArahiraS., MuraiH.. Opt. Express, 2014, 22: 12944
CrossRef Google scholar
[10]
GomesJ. T., DelageL., BaudoinR., GrossardL., BouyeronL., CeusD., SohlerW.. Phys. Rev. Lett., 2014, 112: 143904
CrossRef Google scholar
[11]
AlbotaM. A., WongF. N. C.. Opt. Lett., 2004, 29: 1449
CrossRef Google scholar
[12]
PanH. F., DongH. F., ZengH. P., LuW.. Appl. Phys. Lett., 2006, 89: 191108
CrossRef Google scholar
[13]
LangrockC., DiamantiE., RoussevR. V., YamamotoY., FejerM. M., TakesueH.. Opt. Lett., 2005, 30: 1725
CrossRef Google scholar
[14]
GuX. R., HuangK., PanH. F., WuE., ZengH. P.. Appl. Phys. Lett., 2010, 96: 131111
CrossRef Google scholar
[15]
MaL. J., BienfangJ. C., SlatteryO., TangX.. Opt. Express, 2011, 19: 5470
CrossRef Google scholar
[16]
HuangK., GuX. R., PanH. F., WuE., ZengH. P.. IEEE J.^Sel. Top. Qunatum Electron., 2012, 18: 562
CrossRef Google scholar
[17]
GuX. R., HuangK., PanH. F., WuE., ZengH. P.. Opt. Express, 2012, 20: 2399
CrossRef Google scholar
[18]
AnL., XuY. G., LinQ. L., ZhuH., LinF., LiY.. Sci. Sin-Phys. Mech. Astron., 2014, 44: 804
CrossRef Google scholar
[19]
ZhuH. F., XuY. G., LiB. H., MaP., ZhangJ., DongR., LiY.. Sci. Sin-Phys. Mech. Astron., 2015, 45: 054201
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61127014, 61378033 and 11434005), the National Key Scientific Instrument Project (No.2012YQ150092), the Program of Introducing Talents of Discipline to Universities (No.B12024), the Shanghai Rising-Star Program (No.13QA1401300), and the Shanghai International Cooperation Project (No.13520720700).

Accesses

Citations

Detail

Sections
Recommended

/