Effect of growth time on morphology and photoelectrochemical performance of TiO2 nanorod arrays grown on transparent conducting substrates

Mei-rong Sui, Cui-ping Han, Xiu-quan Gu, Yong Wang, Lu Tang, Hui Tang

Optoelectronics Letters ›› , Vol. 11 ›› Issue (6) : 405-409.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (6) : 405-409. DOI: 10.1007/s11801-015-5170-3
Article

Effect of growth time on morphology and photoelectrochemical performance of TiO2 nanorod arrays grown on transparent conducting substrates

Author information +
History +

Abstract

TiO2 nanorod arrays (NRAs) were synthesized directly on the fluorine tin oxide (FTO) coated glass substrates by a facile hydrothermal route. The effects of growth time on the photoelectrochemical (PEC) properties of TiO2 NRAs are investigated. The samples synthesized for 4 h exhibit a photocurrent intensity of 0.37 mA/cm2 at the irradiation of Xe lamp and a bias of 0 V. As the growth time increases, the thickness and order degree of the NRAs are enhanced, but the photocurrent is reduced a lot. It might be associated with the hindering of a high background electron density in NRs due to the long-time hydrothermal reaction in acid environment. Moreover, the decline behavior is observed, which is attributed to the poor charge separation capacity of TiO2 array electrodes and could be suppressed efficiently by applying a suitable positive bias.

Cite this article

Download citation ▾
Mei-rong Sui, Cui-ping Han, Xiu-quan Gu, Yong Wang, Lu Tang, Hui Tang. Effect of growth time on morphology and photoelectrochemical performance of TiO2 nanorod arrays grown on transparent conducting substrates. Optoelectronics Letters, , 11(6): 405‒409 https://doi.org/10.1007/s11801-015-5170-3

References

[1]
MaY., WangX., JiaY., ChenX., HanH., LiC.. Chem. Rev., 2014, 114: 9987
CrossRef Google scholar
[2]
WuH.B., HngH.H., LouX.W.. Adv. Mater., 2012, 24: 2567
CrossRef Google scholar
[3]
O’ReganB., GräztelM.. Nature, 1991, 353: 737
CrossRef Google scholar
[4]
MathewS., YellaA., GaoP., Humphry-BakerR., CurchodB. F. E., Ashari-AstaniN., TavernelliI., RothlisbergerU., NazeeruddinMd. K., GrätzelM.. Nat. Chem., 2014, 6: 242
CrossRef Google scholar
[5]
TongH., OuyangS., BiY., UmezawaN., OshikiriM., YeJ.. Adv. Mater., 2012, 24: 229
CrossRef Google scholar
[6]
DuC., YangX., MayerM.T., HoytH., XieJ., McMahonG., BischopingG., WangD.. Angew. Chem. Int. Ed., 2013, 52: 12692
CrossRef Google scholar
[7]
JoW.J., JangJ.W., KongK., KangH.J., KimJ.Y., JunH., ParmarK.P.S., LeeJ.S.. Angew. Chem. Int. Ed., 2012, 51: 3147
CrossRef Google scholar
[8]
ZouZ., YeJ., SayamaK., ArakawaH.. Nature, 2001, 414: 625
CrossRef Google scholar
[9]
LiuB., AydilE.S.. J. Am. Chem. Soc., 2009, 131: 3985
CrossRef Google scholar
[10]
GuX.Q., ZhaoY.L., QiangY.H.. J. Mater. Sci. Mat. Electron., 2012, 23: 1373
CrossRef Google scholar
[11]
WangH., BaiY., ZhangH., ZhangZ., LiJ., GuoL.. J. Phys. Chem. C, 2010, 114: 16451
CrossRef Google scholar
[12]
WangC., ChenZ., JinH., CaoC., LiJ., MiZ.. J. Mater. Chem. A, 2014, 2: 17820
CrossRef Google scholar
[13]
WangX., XieJ., LiC. M.. J. Mater. Chem. A, 2015, 3: 1235
CrossRef Google scholar
[14]
SuJ., GuoL., BaoN., GrimesC.A.. Nano Lett., 2011, 11: 1928
CrossRef Google scholar
[15]
MaruskaH. P., GhoshA. K.. Sol. Energy, 1978, 20: 443
CrossRef Google scholar

This work has been supported by the Natural Science Foundation of Xuzhou City (No.KC14SM088), and the Natural Science Foundation Project of Jiangsu Province (No.BK20130198).

Accesses

Citations

Detail

Sections
Recommended

/