Effect of growth time on morphology and photoelectrochemical performance of TiO2 nanorod arrays grown on transparent conducting substrates

Mei-rong Sui , Cui-ping Han , Xiu-quan Gu , Yong Wang , Lu Tang , Hui Tang

Optoelectronics Letters ›› : 405 -409.

PDF
Optoelectronics Letters ›› : 405 -409. DOI: 10.1007/s11801-015-5170-3
Article

Effect of growth time on morphology and photoelectrochemical performance of TiO2 nanorod arrays grown on transparent conducting substrates

Author information +
History +
PDF

Abstract

TiO2 nanorod arrays (NRAs) were synthesized directly on the fluorine tin oxide (FTO) coated glass substrates by a facile hydrothermal route. The effects of growth time on the photoelectrochemical (PEC) properties of TiO2 NRAs are investigated. The samples synthesized for 4 h exhibit a photocurrent intensity of 0.37 mA/cm2 at the irradiation of Xe lamp and a bias of 0 V. As the growth time increases, the thickness and order degree of the NRAs are enhanced, but the photocurrent is reduced a lot. It might be associated with the hindering of a high background electron density in NRs due to the long-time hydrothermal reaction in acid environment. Moreover, the decline behavior is observed, which is attributed to the poor charge separation capacity of TiO2 array electrodes and could be suppressed efficiently by applying a suitable positive bias.

Cite this article

Download citation ▾
Mei-rong Sui, Cui-ping Han, Xiu-quan Gu, Yong Wang, Lu Tang, Hui Tang. Effect of growth time on morphology and photoelectrochemical performance of TiO2 nanorod arrays grown on transparent conducting substrates. Optoelectronics Letters 405-409 DOI:10.1007/s11801-015-5170-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MaY., WangX., JiaY., ChenX., HanH., LiC.. Chem. Rev., 2014, 114: 9987

[2]

WuH.B., HngH.H., LouX.W.. Adv. Mater., 2012, 24: 2567

[3]

O’ReganB., GräztelM.. Nature, 1991, 353: 737

[4]

MathewS., YellaA., GaoP., Humphry-BakerR., CurchodB. F. E., Ashari-AstaniN., TavernelliI., RothlisbergerU., NazeeruddinMd. K., GrätzelM.. Nat. Chem., 2014, 6: 242

[5]

TongH., OuyangS., BiY., UmezawaN., OshikiriM., YeJ.. Adv. Mater., 2012, 24: 229

[6]

DuC., YangX., MayerM.T., HoytH., XieJ., McMahonG., BischopingG., WangD.. Angew. Chem. Int. Ed., 2013, 52: 12692

[7]

JoW.J., JangJ.W., KongK., KangH.J., KimJ.Y., JunH., ParmarK.P.S., LeeJ.S.. Angew. Chem. Int. Ed., 2012, 51: 3147

[8]

ZouZ., YeJ., SayamaK., ArakawaH.. Nature, 2001, 414: 625

[9]

LiuB., AydilE.S.. J. Am. Chem. Soc., 2009, 131: 3985

[10]

GuX.Q., ZhaoY.L., QiangY.H.. J. Mater. Sci. Mat. Electron., 2012, 23: 1373

[11]

WangH., BaiY., ZhangH., ZhangZ., LiJ., GuoL.. J. Phys. Chem. C, 2010, 114: 16451

[12]

WangC., ChenZ., JinH., CaoC., LiJ., MiZ.. J. Mater. Chem. A, 2014, 2: 17820

[13]

WangX., XieJ., LiC. M.. J. Mater. Chem. A, 2015, 3: 1235

[14]

SuJ., GuoL., BaoN., GrimesC.A.. Nano Lett., 2011, 11: 1928

[15]

MaruskaH. P., GhoshA. K.. Sol. Energy, 1978, 20: 443

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/