A temperature sensor based on switchable dual-wavelength fiber Bragg grating laser with a semiconductor saturable absorber mirror

Qi Li , Kai-qiang Huang , Hai-yan Chen

Optoelectronics Letters ›› : 466 -468.

PDF
Optoelectronics Letters ›› : 466 -468. DOI: 10.1007/s11801-015-5169-9
Article

A temperature sensor based on switchable dual-wavelength fiber Bragg grating laser with a semiconductor saturable absorber mirror

Author information +
History +
PDF

Abstract

A temperature sensor based on a switchable dual-wavelength fiber Bragg grating (FBG) laser with a semiconductor saturable absorber mirror (SESAM) is presented and demonstrated experimentally. The repetition rate of Q-switched pulses is ~17 kHz. The results demonstrate that the measured temperature has good linearity to the wavelength spacing of the two lasing wavelengths and has a temperature sensitivity of 21 pm/ºC covering a range of -10—22 °C. The experimental results prove the feasibility of the proposed temperature sensor.

Cite this article

Download citation ▾
Qi Li,Kai-qiang Huang,Hai-yan Chen. A temperature sensor based on switchable dual-wavelength fiber Bragg grating laser with a semiconductor saturable absorber mirror. Optoelectronics Letters 466-468 DOI:10.1007/s11801-015-5169-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JungE.J., KimC.S., JeonqM.Y., KimM.K., JeonM.Y., JunqW., ChenZ.. Optics Express, 2008, 16: 16552

[2]

XieZ., XiaL., LiL., LiuD.. Microwave and Optical Technology Letters, 2013, 55: 15

[3]

PintoA. M. R., FrazãoO., SantosJ. L., Lopez-AmoM., SchusterJ. K.. Journal of Lightwave Technology, 2010, 28: 3149

[4]

LiuD., NgoN. Q., TjinS. C., DongX.. IEEE Photonics Technology Letters, 2007, 19: 1148

[5]

LiuS. C., YinZ. W., ZhangL., ChenX. F., GaoL., ChengJ. C.. Journal of Electromagnetic Waves and Applications, 2009, 23: 2177

[6]

ChenC., LiQ., ChenH.. Proc. SPIE, 2013, 8914: 891405

[7]

WeiJ., FengD., HuangQ., ChangJ.. Optik, 2013, 124: 5146

[8]

Rota-RodrigoS., Rodrigue-CoboL., QuintelaM. A., Lope-HigueraJ. M., Lopez-AmoM.. IEEE Journal on Selected Topics in Quantum Electronics, 2014, 20: 6665106

[9]

SunT., GuoY., WangT., HuoJ., ZhangL.. Optical Fiber Technology, 2014, 20: 235

[10]

YinB., FengS., LiuZ., BaiY., JianS.. Optics Express, 2014, 22: 22528

[11]

LiuS., YanF., PengW., FengT., DongZ., ChangG.. IEEE Photonics Technology Letters, 2014, 26: 1809

[12]

CaoZ., ZhangZ., ShuiT., JiX., WangR., YinC., YuB.. Optics and Laser Technology, 2014, 56: 137

[13]

JiangM., ShumP. P., LinB., TjinS. C., JiangY.. Proc. SPIE, 2011, 8307: 83070M

[14]

Álvarez TamayoR. I., Durán SánchezM., KuzinE. A., Ibarra EscamillaB., PottiezO.. Proc. SPIE, 2011, 7914: 791426

[15]

ChenC., XuZ.-w., WangM., ChenH.-y.. Optoelectronics Letters, 2014, 10: 427

[16]

MengW., CongC., QiL., KaiqiangH., HaiyanC.. Opt. Fiber Technol., 2015, 21: 51

[17]

WangM., ChenC., LiQ., HuangK., ChenH.. Microwave and Optical Technology Letters, 2015, 57: 166

[18]

ChenC., WangM., LiQ., HuangK., ChenH.. Proc. SPIE, 2014, 9270: 927018

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/