Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS

Jia-qing Mo, Jun-wei Hou, Xiao-yi Lü

Optoelectronics Letters ›› , Vol. 11 ›› Issue (6) : 401-404.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (6) : 401-404. DOI: 10.1007/s11801-015-5158-z
Article

Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS

Author information +
History +

Abstract

The silver (Ag) nanowire arrays with regular and uniform size were successfully fabricated inside the nanochannels of anodic aluminum oxide (AAO) template by a simple paired cell method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicate that the as-synthesized samples are composed of face-centered cubic structure, and the average diameter is about 60–70 nm. Transmission electron microscopy (TEM) and the corresponding fast Fourier transformation (FFT) results show that Ag nanowires have a preferred single-crystal structure. Ultraviolet- visible (UV-vis) spectrum of Ag nanowire arrays exhibits UV emission band at 383 nm which can be attributed to the transverse dipole resonance of Ag nanowire arrays. A good surface-enhanced Raman scattering (SERS) spectrum is observed by excitation with a 514.5 nm laser, and the intensity of the SERS peak is about 23 times higher than that of the normal Raman peak measured from an empty AAO template. The high enhancement factor suggests that this method can be used to fabricate SERS sensor with high efficiency.

Cite this article

Download citation ▾
Jia-qing Mo, Jun-wei Hou, Xiao-yi Lü. Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS. Optoelectronics Letters, , 11(6): 401‒404 https://doi.org/10.1007/s11801-015-5158-z

References

[1]
JeongD. H., ZhangY. X., MoskovitsM.. Journal of Physical Chemistry B, 2004, 108: 12724
CrossRef Google scholar
[2]
FangZ., FanL., LinC., ZhangD., Meixner AlfredJ., ZhuX.. Nano Letters, 2011, 11: 1676
CrossRef Google scholar
[3]
LIZ., YUX.-t., QINC.-f., CAOX.-d., PANH.-f., XUJ.-h.. Journal of Optoelectronics ·Laser, 2015, 26: 1423
[4]
PENGY.-j., LIUM.-h., ZHAOJ.-h., YUANH.-c., HONGQ., LIY.. Journal of Optoelectronics ·Laser, 2015, 26: 740
[5]
GeunH. G., JungS. S.. Journal of Physical Chemistry C, 2010, 114: 7258
CrossRef Google scholar
[6]
SoreeK., YounJ. J., GeunH. G., JungS. S., SeungM. P., SeolR.. Journal of Physical Chemistry C, 2009, 113: 16321
CrossRef Google scholar
[7]
ShanD., HuangL., LiX., ZhangW., WangJ., ChengL., FengX., ZhuJ., YuZ.. Journal of Physical Chemistry C, 2014, 118: 23930
CrossRef Google scholar
[8]
Shafer-PeltierK. E., HaynesC. L., GlucksbergM. R., Van DuyneR. P.. Journal of American Chemical Society, 2003, 125: 588
CrossRef Google scholar
[9]
ZhangX., Young MatthewA., OlgaL., Van DuyneR. P.. Journal of American Chemical Society, 2005, 127: 4484
CrossRef Google scholar
[10]
KneippK., WangY., KneippH., PerelmanL. T., ItzkanI., DasariR. R., FeldM. S.. Physical Review Letters, 1997, 78: 1667
CrossRef Google scholar
[11]
MoY. J., MatteiG., PagannoneM., XieS. S.. Applied Physics Letters, 1995, 66: 2591
CrossRef Google scholar
[12]
HouJ. W., YangX. C., CuiM. M., HuangM., WangQ. Y.. Micro & Nano Letters, 2012, 7: 842
CrossRef Google scholar
[13]
YangX.-C., ZouX., LiuY., LiX.-N., HouJ.-W.. Materials Letters, 2010, 64: 1451
CrossRef Google scholar
[14]
ChoiH., ParkS. H.. Journal of American Chemical Society, 2004, 126: 6248
CrossRef Google scholar
[15]
LiuZ., YangY., LiangJ., HuZ., LiS., PengS., QianY.. Journal of Physical Chemistry B, 2003, 107: 12658
CrossRef Google scholar
[16]
BalciS., BittnerA. M., HahnK., ScheuC., KnezM., KadriA., WegeC., JeskeH., KernK.. Electrochimica Acta, 2006, 51: 6251
CrossRef Google scholar
[17]
MasudaH., FukudaK.. Science, 1995, 268: 1466
CrossRef Google scholar
[18]
HouJ.-W., YangX.-C., CuiM.-M., HuangM., WangQ.-Y.. Materials Letters, 2012, 74: 159
CrossRef Google scholar
[19]
YangX. C., LuW., HouJ. W., LiX. N., HanS. S.. Journal of Nanoscience Nanotechnology, 2011, 11: 9818
CrossRef Google scholar
[20]
TianM. L., WangJ. G., KurtzJ., MalloukT. E., ChanM. H. W.. Nano Letters, 2003, 3: 919
CrossRef Google scholar
[21]
SunY. G., XiaY. N.. Advanced Materials, 2002, 14: 833
CrossRef Google scholar
[22]
DebeM. K., KamK. K., LiuJ. C., PoirierR. J.. Journal of Vacuum Science Technol. A, 1988, 6: 2371
CrossRef Google scholar
[23]
ZongR. L., ZhouJ., LiQ., DuB., LiB., FuM., QiX. W., LiL. T.. Journal of Physical Chemistry B, 2004, 108: 16713
CrossRef Google scholar
[24]
MondalB., SahaS. K.. Chemical Physics Letters, 2010, 497: 89
CrossRef Google scholar

This work has been supported by the High Level Talents Introduction Project of Xinjiang Uygur Autonomous Region (No.2013).

Accesses

Citations

Detail

Sections
Recommended

/