Multi-band polarization insensitive metamaterial absorber with dual cross-wires structure

Li-fang Yao , Min-hua Li , Xiao-min Zhai , Hui-bo Wang , Jian-feng Dong

Optoelectronics Letters ›› : 414 -417.

PDF
Optoelectronics Letters ›› : 414 -417. DOI: 10.1007/s11801-015-5157-0
Article

Multi-band polarization insensitive metamaterial absorber with dual cross-wires structure

Author information +
History +
PDF

Abstract

A five-band metamaterial absorber (MMA) based on a simple planar structure is proposed. It utilizes different areas of a single unit cell to match impedance, and produces different absorptive frequencies. Numerical calculation shows that the MMA has five different absorption peaks at 3.78 GHz, 7.66 GHz, 10.9 GHz, 14.5 GHz and 16.7 GHz, and their absorption rates reach 95.5%, 98.6%, 95.7%, 96.6% and 99.8%, respectively. The proposed structure is polarization insensitive for transverse electric (TE) and transverse magnetic (TM) incident waves. Also, the absorptive characteristics over large incident angles are examined. In addition, we analyze the absorption mechanism by the surface current density and power flow density distributions. This simple structure provides a way to design multi-band MMA, and also saves the cost of fabrication.

Cite this article

Download citation ▾
Li-fang Yao, Min-hua Li, Xiao-min Zhai, Hui-bo Wang, Jian-feng Dong. Multi-band polarization insensitive metamaterial absorber with dual cross-wires structure. Optoelectronics Letters 414-417 DOI:10.1007/s11801-015-5157-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LandyN., SajuyigbeS., MockJ., SmithD., PadillaW.. Physical Review Letters, 2008, 100: 20

[2]

HuC., LiX., FengQ., ChenX. N., LuoX.. Optics Express, 2010, 18: 7

[3]

WenQ. Y., ZhangH. W., XieY. S., YangQ. H., LiuY. L.. Applied Physics Letters, 2009, 95: 24

[4]

O’brienS., McPeakeD., RamakrishnaS., PendryJ.. Physical Review B, 2004, 69: 24

[5]

LandyN. I., BinghamC. M., TylerT., JokerstN., SmithD. R., PadillaW. J.. Physical Review BCondensed Matter and Materials Physics, 2009, 79: 12

[6]

ZhuB., WangZ. B., YuZ. Z., ZhangQ., ZhaoJ. M., FengY. J., JiangT.. Chinese Physics Letters, 2009, 26: 11

[7]

HuangL., ChowdhuryD. R., RamaniS., ReitenM. T., LuoS. N., AzadA. K., TaylorA. J., ChenH. T.. Applied Physics Letters, 2012, 101: 10

[8]

TaoH., BinghamC., PilonD., FanK., StrikwerdaA., ShrekenhamerD., PadillaW., ZhangX., AverittR.. Journal of Physics D: Applied Physics, 2010, 43: 22

[9]

ShenX., CuiT. J., ZhaoJ., MaH. F., JiangW. X., LiH.. Optics Express, 2011, 19: 10

[10]

LiangQ., WangT., LuZ., SunQ., FuY., YuW.. Advanced Optical Materials, 2013, 1: 1

[11]

LiS., GaoJ., CaoX., LiW., ZhangZ., ZhangD.. Journal of Applied Physics, 2014, 116: 4

[12]

ZhengW., LiW., ChangS. J.. Optoelectronics Letters, 2015, 11: 18

[13]

WangC. H., KuangD. F., ChangS. J., LinL.. Optoelectronics Letters, 2013, 9: 266

[14]

ParkJ. W., TuongP. V., RheeJ. Y., KimK. W., JangW. H., ChoiE. H., ChenL. Y., LeeY. P.. Optics Express, 2013, 21: 8

[15]

CuiY., FungK. H., XuJ., MaH., JinY., HeS., FangN. X.. Nano Letters, 2012, 12: 3

[16]

ChengY. Z., WangY., NieY., GongR. Z., XiongX., WangX.. Journal of Applied Physics, 2012, 111: 4

[17]

HuangX., YangH., YuS., WangJ., LiM., YeQ.. Journal of Applied Physics, 2013, 113: 21

[18]

JiangZ. H., YunS., ToorF., WernerD. H., MayerT. S.. ACS Nano, 2011, 5: 6

[19]

XuH. X., WangG. M., QiM. Q., LiangJ. G., GongJ. Q., XuZ. M.. Physical Review B-Condensed Matter and Materials Physics, 2012, 86: 20

[20]

LiuN., MeschM., WeissT., HentschelM., GiessenH.. Nano Letters, 2010, 10: 7

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/