Ring cavity fiber laser based on Fabry-Pérot interferometer for high-sensitive micro-displacement sensing

Yan Bai , Feng-ping Yan , Shuo Liu , Si-yu Tan , Xiao-dong Wen

Optoelectronics Letters ›› : 421 -425.

PDF
Optoelectronics Letters ›› : 421 -425. DOI: 10.1007/s11801-015-5152-5
Article

Ring cavity fiber laser based on Fabry-Pérot interferometer for high-sensitive micro-displacement sensing

Author information +
History +
PDF

Abstract

A ring cavity fiber laser based on Fabry-Pérot interferometer (FPI) is proposed and demonstrated experimentally for micro-displacement sensing. Simulation results show that the dips of the FPI transmission spectrum are sensitive to the cavity length of the FPI. With this characteristic, the relationship between wavelength shift and cavity length change can be established by means of the FPI with two aligned fiber end tips. The maximum sensitivity of 39.6 nm/μm is achieved experimentally, which is approximately 25 times higher than those in previous reports. The corresponding ring cavity fiber laser with the sensitivity for displacement measurement of about 6 nm/μm is implemented by applying the FPI as the filter. The proposed fiber laser has the advantages of simple structure, low cost and high sensitivity.

Cite this article

Download citation ▾
Yan Bai, Feng-ping Yan, Shuo Liu, Si-yu Tan, Xiao-dong Wen. Ring cavity fiber laser based on Fabry-Pérot interferometer for high-sensitive micro-displacement sensing. Optoelectronics Letters 421-425 DOI:10.1007/s11801-015-5152-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhuY., ShumP., LuC., LacquetM. B., SwartP. L., ChtcherbakovA. A., SpammerS. J.. Optics Express, 2003, 11: 1918

[2]

Guru PrasadA. S., AsokanS.. Fiber Bragg Grating Sensor Package for Submicron Level Displacement Measurements, Experimental Techniques, 2013, 1

[3]

WeigangZ., XiaoyiD., QidaZ., KaiG., ShuzhongY.. IEEE Photonics Technology Letters, 2001, 13: 1340

[4]

NgJ. H., ZhouX., YangX., HaoJ.. Optics Communications, 2007, 273: 398

[5]

ZhuH.-H., YinJ.-H., ZhangL., JinW., DongJ.-H.. Advances in Structural Engineering, 2010, 13: 249

[6]

QiJ., DeboH.. IEEE Sensors Journal, 2011, 11: 1776

[7]

WenX., NingT., YouH., KangZ., LiJ., LiC., FengT., YuS., JianW.. Chinese Physics Letters, 2014, 31: 034203

[8]

JinpingC., JunZ., ZhenhongJ.. IEEE Photonics Technology Letters, 2013, 25: 2354

[9]

XieF., RenJ., ChenZ., FengQ.. Optics & Laser Technology, 2010, 42: 208

[10]

RongQ., QiaoX., DuY., FengD., WangR., MaY., SunH., HuM., FengZ.. Applied Optics, 2013, 52: 1441

[11]

BravoM., PintoA. M. R., Lopez-AmoM., KobelkeJ., SchusterK.. Optics Letters, 2012, 37: 202

[12]

UshakovN., LiokumovichL.. Applied Optics, 2014, 53: 5092

[13]

Jauregui-VazquezD., Estudillo-AyalaJ. M., Castillo-GuzmanA., Rojas-LagunaR., Selvas-AguilarR., Vargas-RodriguezE., Sierra-HernandezJ. M., Guzman-RamosV., Flores-BalderasA.. Optics Communications, 2013, 308: 289

[14]

ChenJ., ZhouJ., YuanX.. IEEE Photonics Technology Letters, 2014, 26: 837

[15]

WENX.-d., NINGT.-g., YOUH.-d., LIJ., FENGT., PEIL., JIANW.. Optoelectronics Letters, 2013, 9: 325

[16]

TianZ., YamS. S. H., BarnesJ., BockW., GreigP., FraserJ. M., LoockH., OleschukR. D.. IEEE Photonics Technology Letters, 2008, 20: 626

[17]

CAOY., LIUC., TONGZ.-r.. Optoelectronics Letters, 2014, 10: 401

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/