Characteristics of strong-coupling bipolaron qubit in two-dimensional quantum dot in electric field

Ying Zhang, Chao Han, Eerdunchaolu

Optoelectronics Letters ›› , Vol. 11 ›› Issue (5) : 386-389.

Optoelectronics Letters ›› , Vol. 11 ›› Issue (5) : 386-389. DOI: 10.1007/s11801-015-5135-6
Article

Characteristics of strong-coupling bipolaron qubit in two-dimensional quantum dot in electric field

Author information +
History +

Abstract

Based on Lee-Low-Pines (LLP) unitary transformation, this article adopts the variational method of the Pekar type and gets the energy and wave functions of the ground state and the first excited state of strong-coupling bipolaron in two-dimensional quantum dot in electric field, thus constructs a bipolaron qubit. The numerical results represent that the time oscillation period T0 of probability density of the two electrons in qubit decreases with the increasing electric field intensity F and dielectric constant ratio of the medium η; the probability density Q of the two electrons in qubit oscillates periodically with the increasing time t; the probability of electron appearing near the center of the quantum dot is larger, while that appearing away from the center of the quantum dot is much smaller.

Keywords

Electric Field Intensity / Longitudinal Optical / Pekar Type / Phonon Coupling Strength / Dielectric Constant Ratio

Cite this article

Download citation ▾
Ying Zhang, Chao Han, Eerdunchaolu. Characteristics of strong-coupling bipolaron qubit in two-dimensional quantum dot in electric field. Optoelectronics Letters, , 11(5): 386‒389 https://doi.org/10.1007/s11801-015-5135-6

References

[1]
CiracJ I, ZollerP. Phys. Rev. Lett., 1995, 74: 4091
CrossRef Google scholar
[2]
GershenfeldN A, ChuangL. Science, 1997, 275: 350
CrossRef Google scholar
[3]
KaneB E. Nature, 1998, 393: 133
CrossRef Google scholar
[4]
LossD, DiVincenzoD P. Phys. Rev., 1998, A 57: 120
CrossRef Google scholar
[5]
JordanA N, BüttikerM. Phys. Rev., 2005, B 71: 125332
[6]
FurutaS, BarnesC H W, DoranC J L. Phys. Rev., 2004, B 70: 205320
CrossRef Google scholar
[7]
LiS S, LongG L, BaiF S, FengS L, ZhengH Z. Proc. Nat. Acad. Sci. USA, 2001, 98: 11847
CrossRef Google scholar
[8]
LiS S, XiaJ B, YangF H, NiuZ C, FengS L, ZhengH Z. Appl. Phys., 2001, 90: 6151
CrossRef Google scholar
[9]
XiaoJ L. Quantum Inf. Process, 2013, 12: 3707
CrossRef Google scholar
[10]
SunY, DingZ H, XiaoJ L. J. Low Temper. Phys., 2014, 177: 151
CrossRef Google scholar
[11]
Eerdunchaolu and W Xin, Physica B 406, 358 (2011).
[12]
ZhaoY W, HanC, XinWEerdunchaolu. Superlattices Microstruct., 2014, 74: 198
CrossRef Google scholar
[13]
LeeT D, LowF M, PinesD. Phys. Rev., 1953, 90: 97
CrossRef Google scholar
[14]
YildirimT, ErcelebiA J. Phys. Conden. Matt., 1999, 3: 1271
CrossRef Google scholar

This work has been supported by the Natural Science Foundation of Hebei Province (No.E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province (Nos.ZD20131008 and Z2015149).

Accesses

Citations

Detail

Sections
Recommended

/