Characteristics of strong-coupling bipolaron qubit in two-dimensional quantum dot in electric field

Ying Zhang , Chao Han , Eerdunchaolu

Optoelectronics Letters ›› : 386 -389.

PDF
Optoelectronics Letters ›› : 386 -389. DOI: 10.1007/s11801-015-5135-6
Article

Characteristics of strong-coupling bipolaron qubit in two-dimensional quantum dot in electric field

Author information +
History +
PDF

Abstract

Based on Lee-Low-Pines (LLP) unitary transformation, this article adopts the variational method of the Pekar type and gets the energy and wave functions of the ground state and the first excited state of strong-coupling bipolaron in two-dimensional quantum dot in electric field, thus constructs a bipolaron qubit. The numerical results represent that the time oscillation period T0 of probability density of the two electrons in qubit decreases with the increasing electric field intensity F and dielectric constant ratio of the medium η; the probability density Q of the two electrons in qubit oscillates periodically with the increasing time t; the probability of electron appearing near the center of the quantum dot is larger, while that appearing away from the center of the quantum dot is much smaller.

Keywords

Electric Field Intensity / Longitudinal Optical / Pekar Type / Phonon Coupling Strength / Dielectric Constant Ratio

Cite this article

Download citation ▾
Ying Zhang, Chao Han, Eerdunchaolu. Characteristics of strong-coupling bipolaron qubit in two-dimensional quantum dot in electric field. Optoelectronics Letters 386-389 DOI:10.1007/s11801-015-5135-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CiracJ I, ZollerP. Phys. Rev. Lett., 1995, 74: 4091

[2]

GershenfeldN A, ChuangL. Science, 1997, 275: 350

[3]

KaneB E. Nature, 1998, 393: 133

[4]

LossD, DiVincenzoD P. Phys. Rev., 1998, A 57: 120

[5]

JordanA N, BüttikerM. Phys. Rev., 2005, B 71: 125332

[6]

FurutaS, BarnesC H W, DoranC J L. Phys. Rev., 2004, B 70: 205320

[7]

LiS S, LongG L, BaiF S, FengS L, ZhengH Z. Proc. Nat. Acad. Sci. USA, 2001, 98: 11847

[8]

LiS S, XiaJ B, YangF H, NiuZ C, FengS L, ZhengH Z. Appl. Phys., 2001, 90: 6151

[9]

XiaoJ L. Quantum Inf. Process, 2013, 12: 3707

[10]

SunY, DingZ H, XiaoJ L. J. Low Temper. Phys., 2014, 177: 151

[11]

Eerdunchaolu and W Xin, Physica B 406, 358 (2011).

[12]

ZhaoY W, HanC, XinWEerdunchaolu. Superlattices Microstruct., 2014, 74: 198

[13]

LeeT D, LowF M, PinesD. Phys. Rev., 1953, 90: 97

[14]

YildirimT, ErcelebiA J. Phys. Conden. Matt., 1999, 3: 1271

AI Summary AI Mindmap
PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/