Miniature Fabry-Perot interferometric sensor for temperature measurement based on photonic crystal fiber

Xing-hu Fu , Hai-yang Xie , Feng Wang , Peng Jiang , Guang-wei Fu , Wei-hong Bi

Optoelectronics Letters ›› : 382 -385.

PDF
Optoelectronics Letters ›› : 382 -385. DOI: 10.1007/s11801-015-5131-x
Article

Miniature Fabry-Perot interferometric sensor for temperature measurement based on photonic crystal fiber

Author information +
History +
PDF

Abstract

A novel miniature Fabry-Perot interferometric (FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber (PCF) with a single-mode fiber (SMF). The air holes of the PCF are fully collapsed by the discharge arc during the splicing procedure to enhance the reflection coefficient of the splicing point. The transmission spectra with different temperatures are measured, and the experimental results show that the linear response of 11.12 pm/°C in the range of 30–80 °C is obtained. This sensor has potential applications in temperature measurement field.

Keywords

Fiber Bragg Grating / Photonic Crystal Fiber / Amplify Spontaneous Emission / Optical Path Difference / Optic Letter

Cite this article

Download citation ▾
Xing-hu Fu,Hai-yang Xie,Feng Wang,Peng Jiang,Guang-wei Fu,Wei-hong Bi. Miniature Fabry-Perot interferometric sensor for temperature measurement based on photonic crystal fiber. Optoelectronics Letters 382-385 DOI:10.1007/s11801-015-5131-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PangF. F., XiangW. C., GuoH. R., ChenN., ZengX. L., ChenZ. Y., WangT. Y.. Optics Express, 2008, 16: 12967

[2]

LiL. C., XiaL., XieZ. H., LiuD. M.. Optics Express, 2012, 20: 11109

[3]

GANH.-b., CHENZ., ZHANGJ., GANH.-b., TANGJ.-y., LUOY.-h., YUJ.-h., LUH.-h., GUANGH.-y.. Journal of Optoelectronics ·Laser, 2015, 26: 633

[4]

GuoH. L., XiaoG. Z., MardN., YaoJ. P.. Journal of Lightwave Technology, 2013, 31: 2099

[5]

SpearrinR. M., GoldensteinC. S., JeffriesJ. B., HansonR. K.. Applied Optics, 2014, 53: 1938

[6]

PeiH. F., YinJ. H., JinW.. Measurement Science and Technology, 2013, 24: 095202

[7]

ChenZ. Y., DaiZ. M., ChenN., LiuS. P., PangF. F., LuB., WangT. Y.. IEEE Photonics Technology Letters, 2014, 26: 777

[8]

XiaoY., ZhangJ., CaiX., TanS. Z., YuJ. H., LuH. H., LuoY. H., LiaoG. Z., LiS. P., TangJ. Y., ChenZ.. Optics Express, 2014, 22: 31555

[9]

LiuX., BaoX. Y.. Journal of Lightwave Technology, 2012, 30: 1053

[10]

GUOY.-x., ZHANGD.-s., ZHOUZ.-d., LIL.-t., ZHUF.-d.. Journal of Optoelectronics ·Laser, 2014, 25: 435

[11]

MahakudR., KumarJ., PrakashO., DixitS. K.. Applied Optics, 2013, 52: 7570

[12]

WuY., YaoB. C., ZhangA. Q., RaoY. J., WangZ. G., ChengY., GongY., ZhangW. L., ChenY. F., ChiangK. S.. Optics Letters, 2014, 39: 1235

[13]

YuanL. B., YangJ., LiuZ. H.. IEEE Sensors Journal, 2008, 8: 1114

[14]

WuQ., YuanJ. H., YuC. X., SangX. Z., SunL. P., LiJ., GuoT., GuanB. O., ChanH. P., ChiangK. S., MaY. Q., WangP. F., SemenovaY., FarrellG.. Optics Letters, 2014, 39: 6521

[15]

SunH., YangS., ZhangX. L., YuanL. T., YangZ. H., HuM. L.. Optics Communications, 2015, 340: 39

[16]

TaoI., Yu-tangD.A.I., Qian-chengZ.H.A.O.. Journal of Optoelectronics·Laser, 2014, 25: 625

[17]

MaY., QiaoX. G., GuoT., WangR. H., ZhangJ., WengY. Y., RongQ. Z., HuM. L., FengZ. Y.. Chinese Optics Letters, 2012, 10: 050603

[18]

JiangM. S., LiQ. S., WangJ. N., YaoW. G., JinZ. W., SuiQ. M., MaY. H., ShiJ. G., ZhangF. Y., JiaL., DongW. F.. Optics Express, 2013, 21: 3083

[19]

FrazãoO., SantosJ. L.. Journal of Optics A: Pure and Applied Optics, 2004, 6: 553

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/